Física (Lic.)

URI permanente para esta colecciónhttp://54.81.141.168/handle/123456789/9133

Explorar

collection.search.results.head

Mostrando 1 - 5 de 5
  • Ítem
    Assessment of searches for long-lived heavy neutrinos decaying into photons
    (Pontificia Universidad Católica del Perú, 2023-05-24) Manrique Chavil, Cristian Miguel; Jones Pérez, Joel
    El Portal Seesaw de Dimensión-5 es un modelo Seesaw de tipo I extendido por operadores con d = 5 involucrando a estados estériles. Estos llevan a nuevas interacciones entre todos los neutrinos y los bosones neutros del Modelo Estándar. En este trabajo estudiaremos la producción de pares de neutrinos pesados a partir de la desintegración del bosón de Higgs, donde los primeros tienen un largo tiempo de vida, decayendo posteriormente a un fotón y un neutrino ligero. Exploramos este proceso reproduciendo teóricamente dos búsquedas experimentales de fotones “no apuntadores” por ATLAS, mostrando la distribución esperada de eventos en términos del tiempo de llegada ty y la variable “apuntadora” |zy| Nuestros resultados indican que la búsqueda a 8 TeV no es apropiada para nuestro modelo. Por otro lado, la búsqeuda a 13 TeV, adaptada para un gatillo de VBF, resulta mucho más prometedora.
  • Ítem
    Búsqueda de neutrinos pesados vía fotones fuera de tiempo en colisionadores
    (Pontificia Universidad Católica del Perú, 2023-02-15) Delgado Dador, Cesar Franco; Jones Pérez, Joel
    El Modelo Estándar de Física de Partículas (ME) es una teoría que une tres de las interacciones fundamentales de la naturaleza en una solución elegante. Describe las propiedades e interacciones de fermiones con spin ½ y bosones con spin entero. Estos fermiones luego son subdivididos en quarks y leptones. En el ME, los neutrinos se consideran partículas sin masa pero esta característica luego fue refutada por experimentos de oscilación, demostrando que tienen masas de hasta 0.1ev. Esto significa que el ME debe ser extendido para brindar masas a los neutrinos. El mecanismo Seesaw es una de esas extensiones que permite a los neutrinos tener masas mediante la introducción de neutrinos masivos estériles y de mano derecha. En este trabajo extendemos el modelo Seesaw al añadir operadores efectivos de dimensión 5 que median la producción y decaimiento de neutrinos pesados de larga vida N con masas en el orden de los GeV. Exploramos la producción de N mediante decaimientos exóticos del Higgs a través del operador efectivo neutrino-Higgs. El neutrino pesado luego decae a un neutrino del ME y un fotón por medio del operador dipolar, cuyo decaimiento parcial es calculado de forma analítica. Consideramos dos procesos de producción del Higgs: gluon fusion (GF) y vector boson fusion (VBF). Evaluamos la posible de detección de N con búsquedas de fotones desplazados en el detector ATLAS para energía de colisión de 13 TeV, simulado en MadGraph. Estas búsquedas usaron variables de tiempo retardado e indirección, ty y Azy |, respectivamente. Encontramos que para procesos de GF y VBF, la mayoría de eventos tipo señal pertenecen a las regiones de background y control en lugar de la región de señal, significando que la búsqueda realizada en este trabajo no es sensible al modelo.
  • Ítem
    Revisión teórica de física no-estándar para su introducción en oscilaciones de neutrinos
    (Pontificia Universidad Católica del Perú, 2021-05-18) Pérez García, Alicia; Gago Medina, Alberto Martín
    Esta tesis contiene al Trabajo de Investigación para Bachillerato presentado en [1], donde se incluyen los capítulos 1, 2 y 3. Estos han sido revisados y corregidos según correspondía. Los capítulos 4, 5 y 6 de este trabajo son contribuciones nuevas. Los neutrinos juegan un papel importante en nuestro entendimiento de la naturaleza y están siendo estudiados exhaustivamente en la actualidad. En particular, la solución de oscilaciones de neutrinos inducidas por masa está respaldada por contundente evidencia experimental, y presenta un excelente escenario para observar nuevas interacciones con materia. Como un punto de partida en la investigación en Física de Neutrinos, nuestro objetivo es revisar el formalismo de oscilaciones de neutrinos e Interacciones No-Estándar (NSI). Este trabajo propone la revisión de la descripción en Mecánica Cuántica de las oscilaciones de neutrinos, discutiendo las inconsistencias de las aproximaciones usuales y planteando una más precisa. El mecanismo de oscilaciones en materia también es estudiado con el propósito de derivar las ecuaciones diferenciales a resolver para la evolución de estados. Además, debido a que su masa puede causarlas, revisamos el marco comúnmente usado de Interacciones No-Estándar de neutrinos con materia y su introducción en las ecuaciones. Los efectos de NSI son considerados en la producción, detección y propagación de neutrinos, particularmente en el contexto de Deep Underground Neutrino Experiment (DUNE). Para encontrar los estados evolucionados, se desarrolló un programa para resolver la ecuación de Schrödinger numéricamente. Los resultados fueron comparados con los datos existentes de un software de simulación de experimentos de neutrinos, permitiendo la validación de nuestras soluciones y, de la misma manera, la modificación apropiada del software. Los efectos de las Interacciones No-Estándar son presentadas de manera más evidentes.
  • Ítem
    Búsqueda de neutrinos pesados vía vértices desplazados en procesos de fusión de bosones vectoriales en colisionadores
    (Pontificia Universidad Católica del Perú, 2019-10-04) Masias Teves, Joaquin Aurelio; Jones Pérez, Joel
    The Standard Model (SM) is the theory that describes elementary particles and their fundamental interactions. In the Standard Model neutrinos are massless particles. Nevertheless, this has been proven wrong by neutrino oscillation experiments. Neutrinos possess mass, but several orders of magnitude below those of the other SM fermions. This invites the consideration of new physics, beyond that described by the SM, that could explain the smallness of neutrino mass. This is achieved, in particular, in the Type-1 Seesaw model, which is the focus of this work. Neutrinos are especially difficult to detect in colliders, since they are chargeless, they leave no tracks, and no energy in the calorimeters. However, if massive enough, these new neutrinos can decay into charged particles inside the collider, which results in tracks with displaced vertices. A complete analysis of this processes is required in order to characterize the parameters of these new particles. In this work we use the MonteCarlo simulation program MadGraph to study the relevant processes that involve these neutrinos. The principal objective of this work is to define the probability to observe the heavy neutrinos as Higgs decay products in the LHC (and HL-LHC), when they have been produced via vector boson fusion (VBF) and are in the section of parameter space useful for displaced vertices.
  • Ítem
    Simulación de fábricas de neutrinos
    (Pontificia Universidad Católica del Perú, 2011-05-09) Jones Pérez, Joel; Gago Medina, Alberto Martín
    Una serie de experimentos con neutrinos ha establecido que estos tienen masa, existiendo una mezcla entre sus autoestados de sabor. La mezcla genera una oscilación entre estos autoestados durante la propagación de los neutrinos, descrita por una serie de parámetros y por la diferencia cuadrada de las masas. La propuesta con mayor sensibilidad en la medición de los parámetros de oscilación radica en futuras instalaciones llamadas "fábricas de neutrinos". Estas producirán un alto flujo de neutrinos a partir del decaimiento del muón, siendo capaces de medir una gran variedad de canales de oscilación.