Informática con mención en Ciencias de la Computación

URI permanente para esta colecciónhttp://54.81.141.168/handle/123456789/51445

Explorar

Resultados de Búsqueda

Mostrando 1 - 2 de 2
  • Ítem
    Diseño de un modelo explicativo basado en ontologías aplicado a un chatbot conversacional
    (Pontificia Universidad Católica del Perú, 2024-01-15) Arteaga Meléndez, Daniel Martin; Gómez Montoya, Héctor Erasmo
    Actualmente, la inteligencia artificial es una de las áreas de investigación más importantes para el desarrollo de tecnología en múltiples disciplinas. Aunque ha tenido un crecimiento exponencial en los últimos años, el entendimiento de cómo funciona es mínimo para la mayoría de las personas. En consecuencia de ello, su uso en actividades que implican una toma de decisiones es limitado, lo cual se evidencia en el Reporte 2023 de Artificial Intelligence Index [1]. Según este reporte, el cambio porcentual en las respuestas de adopción de la inteligencia artificial por industria y actividad entre el 2021 y 2022 ha sido de -15% y -13% para las actividades de marketing y ventas, y desarrollo de productos y/o servicios, respectivamente. Frente a esto se propone el diseño de un modelo que permita explicar los componentes básicos de un sistema basado en inteligencia artificial a través de un chatbot conversacional en idioma inglés. De este modo, la explicación se brinda en un formato sencillo (texto) y a través de un medio interactivo (conversación). El modelo explicativo se basa en la ontología XAIO, propuesta en este estudio y desarrollada a partir de dos ontologías de aprendizaje de máquina e inteligencia artificial explicable. Haciendo uso de un modelo de generación de lenguaje natural a partir de datos estructurados, el modelo explicativo genera explicaciones en lenguaje natural basadas en el conocimiento descrito en las tripletas de la ontología XAIO. Para evaluar el modelo se implementó un chatbot conversacional que utiliza un modelo de entendimiento de lenguaje natural para identificar intenciones y entidades, a partir de las cuales se realizan las consultas en la ontología que permiten obtener las tripletas. En la evaluación cuantitativa se obtuvo un BLEU promedio de 76.97, lo cual indica un buen desempeño en la tarea de generación de lenguaje natural a partir de datos estructurados. Asimismo, se desarrollaron sistemas de inteligencia artificial explicable con chatbot para la prueba con usuarios y se obtuvo un SUS de 69, indicando una usabilidad por encima del promedio. Finalmente, también se realizó una evaluación cualitativa para obtener las apreciaciones de los participantes acerca de los sistemas, las cuales señalan la coherencia al momento de responder, la sencillez de las respuestas y la interacción amigable con el chatbot.
  • Ítem
    Revisión sistemática sobre la aplicación de ontologías de dominio en el análisis de sentimiento
    (Pontificia Universidad Católica del Perú, 2016-11-26) Olivares Poggi, César Augusto; Melgar Sasieta, Héctor Andrés
    El análisis de sentimiento es un área de creciente investigación en los campos del procesamiento de lenguaje natural y la recuperación de información. En los últimos años ha habido un aumento en la aplicación de técnicas semánticas en el análisis de sentimiento, en particular con el apoyo de la aplicación de ontologías de dominio. Sin embargo, en la literatura actual no se cuenta con un estudio que reporte de manera sistemática los beneficios alcanzados con la aplicación de ontologías de dominio al análisis de sentimiento. Esta revisión sistemática tiene por objetivos realizar dicha síntesis, reportar el grado de generalización de las investigaciones realizadas, verificar el aprovechamiento de la riqueza expresiva de las ontologías de dominio y señalar el estado del arte actual en la representación de las emociones humanas por medio de ontologías de dominio en su aplicación al análisis de sentimiento. Se identificó 9 distintos problemas del análisis del sentimiento a los que se aplicó ontologías de dominio y un total de 22 beneficios de dicha aplicación. Los beneficios más reportados son: (1) el soporte para una representación estructurada de las opiniones y la vinculación de datos; (2) mayor precisión y exhaustividad en la clasificación de la polaridad; y (3) soporte para la representación de modelos emocionales. Como investigación futura se sugiere profundizar en el empleo de ontologías de dominios para analizar el sentimiento a nivel de conceptos, modelar el proceso de análisis de sentimiento, estandarizar la elaboración de ontologías de productos e integrar diversos modelos emocionales, así como aprovechar mejor la expresividad semántica y capacidad de razonamiento de las ontologías de dominio.