Informática con mención en Ciencias de la Computación

URI permanente para esta colecciónhttp://54.81.141.168/handle/123456789/51445

Explorar

Resultados de Búsqueda

Mostrando 1 - 3 de 3
  • Ítem
    Diseño de un modelo explicativo basado en ontologías aplicado a un chatbot conversacional
    (Pontificia Universidad Católica del Perú, 2024-01-15) Arteaga Meléndez, Daniel Martin; Gómez Montoya, Héctor Erasmo
    Actualmente, la inteligencia artificial es una de las áreas de investigación más importantes para el desarrollo de tecnología en múltiples disciplinas. Aunque ha tenido un crecimiento exponencial en los últimos años, el entendimiento de cómo funciona es mínimo para la mayoría de las personas. En consecuencia de ello, su uso en actividades que implican una toma de decisiones es limitado, lo cual se evidencia en el Reporte 2023 de Artificial Intelligence Index [1]. Según este reporte, el cambio porcentual en las respuestas de adopción de la inteligencia artificial por industria y actividad entre el 2021 y 2022 ha sido de -15% y -13% para las actividades de marketing y ventas, y desarrollo de productos y/o servicios, respectivamente. Frente a esto se propone el diseño de un modelo que permita explicar los componentes básicos de un sistema basado en inteligencia artificial a través de un chatbot conversacional en idioma inglés. De este modo, la explicación se brinda en un formato sencillo (texto) y a través de un medio interactivo (conversación). El modelo explicativo se basa en la ontología XAIO, propuesta en este estudio y desarrollada a partir de dos ontologías de aprendizaje de máquina e inteligencia artificial explicable. Haciendo uso de un modelo de generación de lenguaje natural a partir de datos estructurados, el modelo explicativo genera explicaciones en lenguaje natural basadas en el conocimiento descrito en las tripletas de la ontología XAIO. Para evaluar el modelo se implementó un chatbot conversacional que utiliza un modelo de entendimiento de lenguaje natural para identificar intenciones y entidades, a partir de las cuales se realizan las consultas en la ontología que permiten obtener las tripletas. En la evaluación cuantitativa se obtuvo un BLEU promedio de 76.97, lo cual indica un buen desempeño en la tarea de generación de lenguaje natural a partir de datos estructurados. Asimismo, se desarrollaron sistemas de inteligencia artificial explicable con chatbot para la prueba con usuarios y se obtuvo un SUS de 69, indicando una usabilidad por encima del promedio. Finalmente, también se realizó una evaluación cualitativa para obtener las apreciaciones de los participantes acerca de los sistemas, las cuales señalan la coherencia al momento de responder, la sencillez de las respuestas y la interacción amigable con el chatbot.
  • Ítem
    Minería web de textos en lenguas indígenas para desarrollar tecnologías de lenguaje. Caso de estudio: quechua sureño
    (Pontificia Universidad Católica del Perú, 2022-11-09) Ubaldo Gamarra, Victoria Alejandra; Oncevay Marcos, Felix Arturo
    En la actualidad, para los más de 30 millones de peruanos, la información a la que accedemos se encuentra mayormente en el idioma español. Sin embargo Perú es un país multilingüe, posee una gran riqueza cultural y lingüística con alrededor de 47 lenguas originarias. Para esta población encontrar textos, noticias y contenido en internet en su lengua nativa es una tarea complicada. Existe un limitado acceso a información como lecturas, textos, noticias u otros contenidos que en modalidad digital es muy escaso. Esto se debe a que los pocos ciudadanos que se comunican en lenguas nativas son de manera oral y algunos hacen uso del español sobre sus lenguas nativas. De ese modo, existen investigaciones en el campo de la inteligencia artificial donde a partir del poco material digital recolectado de lenguas nativas se construyeron corpus digitales para tareas de traducción automática y detección del lenguaje. Sin embargo, aún son corpus pequeños para elaborar traductores de calidad, presentan complicaciones en traducir textos completos, y además díficil el aprendizaje con algoritmos complejos, como redes neuronales profundas. Por este motivo se propone realizar una minería web de textos en la lengua originaria quechua sureño para incrementar la cantidad de oraciones y diversidad de dominios, evaluar la calidad de los nuevos textos en un modelo de traducción automática de quechua a español, y desarrollar una web de libre acceso de consulta al corpus creado.
  • Ítem
    Agrupamiento de textos basado en la generación de Embeddings
    (Pontificia Universidad Católica del Perú, 2022-08-19) Cachay Guivin, Anthony Wainer; Beltrán Castañón, César Armando
    Actualmente, gracias a los avances tecnológicos, principalmente en el mundo de la informática se logra disponer de una gran cantidad de información, que en su mayoría son una composición de signos codificados a nivel computacional que forman una unidad de sentido, como son los textos. Debido a la variabilidad y alta volumetría de información navegable en internet hace que poder agrupar información veraz sea una tarea complicada. El avance computacional del lenguaje de procesamiento natural está creciendo cada día para solucionar estos problemas. El presente trabajo de investigación estudia la forma como se agrupan los textos con la generación de Embeddings. En particular, se centra en usar diferentes métodos para aplicar modelos supervisados y no supervisados para que se puedan obtener resultados eficientes al momento de toparse con tareas de agrupamiento automático. Se trabajó con cinco Datasets, y como resultado de la implementación de los modelos supervisados se pudo determinar que el mejor Embedding es FastText implementado con Gensim y aplicado en modelos basados en boosting. Para los modelos no supervisados el mejor Embedding es Glove aplicado en modelos de redes neuronales con AutoEncoder y capa K-means.