Informática con mención en Ciencias de la Computación

URI permanente para esta colecciónhttp://54.81.141.168/handle/123456789/51445

Explorar

Resultados de Búsqueda

Mostrando 1 - 3 de 3
  • Ítem
    Predicción de un tiro penal de fútbol basado en la estimación de postura del jugador
    (Pontificia Universidad Católica del Perú, 2024-06-24) Mauricio Salazar, Josue Angel; Alatrista Salas, Hugo
    En este artículo se presenta una metodología innovadora para predecir un tiro penal en fútbol basado en la estimación de postura del jugador que ejecuta el disparo haciendo uso de dos herramientas de visión computacional como segmentación semántica en videos y la estimación de postura 3D mediante los métodos TAM y MMPose, respectivamente. Para ello, se construyó un corpus de videos de tiros penales y se han entrenado modelos de aprendizaje profundo para predecir la región del arco a la cual llegará el disparo. Los resultados muestran que el modelo llamado CNN 3D logra una mejor precisión con respecto a los otros modelos entrenados. Además, se ha medido la influencia de distintas partes del cuerpo con respecto a la tarea de predicción, mostrando que las piernas son las partes más influyentes. Por último, implementamos una herramienta web para el entrenamiento de porteros y jugadores de fútbol en tiros penales, ofreciendo de esta manera posibles mejoras en las tácticas de un disparo de tiro penal mediante el uso de la visión computacional.
  • Ítem
    Evaluación de modelos de segmentación semántica para el monitoreo de deslizamiento de tierra utilizando imágenes satelitales
    (Pontificia Universidad Católica del Perú, 2024-04-03) Yali Samaniego, Roy Marco; Fonseca Arroyo, Pablo Alejandro
    En el ámbito del aprendizaje automático, un desafío persistente es la disponibilidad de datos suficientes, especialmente en tareas de visión por computadora. Este desafío se amplifica cuando se trabaja con sensores remotos, donde las bases de datos etiquetadas para abordar problemas son escasas. Este manuscrito examina críticamente el monitoreo de deslizamientos de tierra en el paisaje peruano y presenta tres contribuciones en esta dirección. La primera contribución expande un conjunto de datos de imágenes satelital es sobre deslizamientos de tierra (Landslide4Sense) proveniente de territorios asiáticos, con 3799 imágenes debidamente etiquetadas. Reconociendo la dinámica geoespacial de Perú, se incrementó este conjunto de datos con 838 escenarios locales. Estas adiciones mantienen congruencia con el conjunto de datos original en términos de atributos y configuración, asegurando replicabilidad y escalabilidad para futuras investigaciones. La segunda evalúa varios modelos de segmentación semántica basados en la arquitectura U-net, reforzada por la función de pérdida de Entropía Cruzada Ponderada + Dice Loss, óptima en tareas de segmentación con conjuntos de datos desequilibrados. Los resultados permiten alcanzar un F1-Score del 75.5% con la arquitectura U-net (vanilla) superando el benchmark de referencia del 71.65%. La última contribución muestra un desarrollado integral para la adquisición de datos, procesamiento y entrenamiento/evaluación de modelos. Dado que este marco tiene el potencial de impulsar una aplicabilidad general de sistemas de segmentación a sistemas de monitoreo de deslizamientos de tierra, y detener un alcance más amplio a la comunidad académica y partes interesadas gubernamentales en Latinoamérica y en todo el mundo.
  • Ítem
    Estimación del carbono almacenado en paisajes agropecuarios y ganaderos a partir de Imágenes multiespectrales capturadas por drones, y técnicas de aprendizaje profundo
    (Pontificia Universidad Católica del Perú, 2024-01-10) Tovar Galarreta, Juan Carlos Alfredo; Villanueva Talavera, Edwin Rafael
    Los paisajes agrícolas y ganaderos están estrechamente relacionados con el flujo de carbono, ya que actúan como reservorios de carbono en forma de biomasa. La evaluación de las reservas de carbono almacenadas en estas zonas es importante para apoyar la toma de decisiones que impidan que estas zonas se conviertan en fuentes de emisión de carbono. Sin embargo, las técnicas tradicionales de estimación de las reservas de carbono requieren un muestreo in situ, lo que supone una tarea extenuante, arriesgada, costosa DE escasa cobertura. En este estudio, proponemos una metodología, basada en imágenes multiespectrales capturadas por drones y modelos de aprendizaje profundo, para automatizar la tarea de estimar mapas de reservas de carbono almacenados en paisajes agrícolas y ganaderos. Aplicamos una arquitectura de red neuronal U-Net para discriminar las zonas arbóreas y pastizales. Luego, se desarrolla un modelo basado en redes neuronales convolucionales para la estimación de la densidad de carbono a partir de imágenes multiespectrales. Resultados experimentales en paisajes agrícolas y ganaderos de la Amazonía peruana mostraron la efectividad de la metodología propuesta, reportando un mIoU de 87%, un RMSE de 2.44 para zonas arbóreas, y un RMSE de 1.84 para zonas de pastura. Concluimos que la estimación de la densidad de carbono es alcanzable con el enfoque propuesto. Esta metodología puede ser útil para la toma de decisiones y puede contribuir a la gestión o al control del cambio climático.