Informática con mención en Ciencias de la Computación
URI permanente para esta colecciónhttp://54.81.141.168/handle/123456789/51445
Explorar
4 resultados
Resultados de Búsqueda
Ítem Texto completo enlazado Diseño de un proceso computacional basado en técnicas de minería de datos para el análisis del fenómeno de "El Niño"(Pontificia Universidad Católica del Perú, 2018-01-19) Díaz Barriga, Oscar Antonio; Alatrista Salas, HugoEl Perú es afectado recurrentemente por el fenómeno El Niño, el cual es un fenómeno climático que consiste en el aumento de la temperatura del mar en el Pacifico Ecuatorial. Este a su vez forma parte del ENSO (El Niño - Oscilación del Sur) que tiene un periodo de actuación de 2 a 7 años, con una fase cálida conocida como El Niño y una fase fría, La Niña. En la actualidad mediante un juicio experto se analizan las diversas fuentes de datos heterogéneas para poder encontrar posibles correlaciones útiles entre ellos. En el presente trabajo se propone un proceso computacional basado en técnicas de minería de datos que permita determinar la existencia de correlaciones espacio-temporales en relación a la temperatura superficial del mar y las variables meteorológicas pertenecientes a las regiones de la costa norte del Perú, en el periodo 2015 al 2016, último intervalo de tiempo en el que se presentó El Nino. Para esto se utiliza una metodología basada en KDD (Knowledge Discovery in Database), la cual está conformada por una serie de pasos como: la recolección de diferentes fuentes de datos, la integración en una base de datos explotable, limpieza y pretratamiento de los datos, creación de escenarios que permitan validar las posibles correlaciones, extracción de patrones mediante la librería SPMF y finalmente una propuesta de visualización, de los patrones encontrados, que permita comprender mejor el fenómeno. Los resultados obtenidos muestran la existencia de correlaciones espaciotemporales en las regiones del norte del Perú principalmente entre la temperatura de la superficie del mar y el caudal de los ríos de la costa, siendo estas correlaciones validadas por un experto miembro del IGP.Ítem Texto completo enlazado Análisis de publicaciones en una red social de microblogging para la detección automática de sucesos violentos durante manifestaciones públicas(Pontificia Universidad Católica del Perú, 2017-05-04) Oncevay Marcos, Félix Arturo; Melgar Sasieta, Héctor AndrésEl activismo social en el Perú se encuentra en crecimiento, principalmente en las zonas urbanas y en los sectores de ingresos medios, donde las redes sociales han llegado a influir en las diversas acciones de la población, y en el modo de informar, influir y convocar a las personas. Es por ello que se han observado casos recientes como las marchas contra la Ley Laboral Juvenil o ‘Ley Pulpín’, donde se movilizó una gran cantidad de personas, y se podían observar dos manifestaciones en paralelo pero afines: en la calle y en las redes sociales, principalmente en Twitter. Sin embargo, a pesar de ser convocada como marcha pacífica, sucedieron actos de violencia y enfrentamientos, los cuales lamentablemente son frecuentes en la realidad peruana. En este contexto, se propone el desarrollo de un mecanismo para analizar los mensajes publicados en Twitter durante una manifestación real. El objetivo principal es identificar y caracterizar automáticamente los diferentes sucesos de violencia que pueden ocurrir durante la protesta. Para esto, luego de recolectar publicaciones de Twitter durante manifestaciones reales, se analizarán cuáles son las mejores técnicas a aplicar para el tratamiento y transformación de estos mensajes a información relevante para nuestro objetivo. El enfoque de esta investigación se plantea desde las áreas de la ingeniería del conocimiento (análisis del dominio del conocimiento sobre violencia), la minería de textos (detección, resumen y descripción de eventos a partir de textos) y el procesamiento de lenguaje natural. Finalmente, se calcularán métricas de evaluación sobre los sucesos violentos identificados, para validar la eficacia del procedimiento propuesto.Ítem Texto completo enlazado Revisión sistemática sobre la aplicación de ontologías de dominio en el análisis de sentimiento(Pontificia Universidad Católica del Perú, 2016-11-26) Olivares Poggi, César Augusto; Melgar Sasieta, Héctor AndrésEl análisis de sentimiento es un área de creciente investigación en los campos del procesamiento de lenguaje natural y la recuperación de información. En los últimos años ha habido un aumento en la aplicación de técnicas semánticas en el análisis de sentimiento, en particular con el apoyo de la aplicación de ontologías de dominio. Sin embargo, en la literatura actual no se cuenta con un estudio que reporte de manera sistemática los beneficios alcanzados con la aplicación de ontologías de dominio al análisis de sentimiento. Esta revisión sistemática tiene por objetivos realizar dicha síntesis, reportar el grado de generalización de las investigaciones realizadas, verificar el aprovechamiento de la riqueza expresiva de las ontologías de dominio y señalar el estado del arte actual en la representación de las emociones humanas por medio de ontologías de dominio en su aplicación al análisis de sentimiento. Se identificó 9 distintos problemas del análisis del sentimiento a los que se aplicó ontologías de dominio y un total de 22 beneficios de dicha aplicación. Los beneficios más reportados son: (1) el soporte para una representación estructurada de las opiniones y la vinculación de datos; (2) mayor precisión y exhaustividad en la clasificación de la polaridad; y (3) soporte para la representación de modelos emocionales. Como investigación futura se sugiere profundizar en el empleo de ontologías de dominios para analizar el sentimiento a nivel de conceptos, modelar el proceso de análisis de sentimiento, estandarizar la elaboración de ontologías de productos e integrar diversos modelos emocionales, así como aprovechar mejor la expresividad semántica y capacidad de razonamiento de las ontologías de dominio.Ítem Texto completo enlazado Caracterización espacio temporal de la ecofisiología de la "apodanthera biflora" utilizando minería de patrones secuenciales(Pontificia Universidad Católica del Perú, 2016-10-28) Barturén Larrea, José Luis; Alatrista Salas, HugoEn los últimos años, los investigadores del Laboratorio de Ecología Evolutiva de la Universidad Peruana Cayetano Heredia (UPCH) han venido estudiando especies nativas del Bosque Seco Ecuatorial del norte del Perú. Este es el caso de la Apodanthera Biflora, raíz comestible de potencial uso alimentario e industrial. Con la finalidad de desarrollar planes de sostenibilidad y preservación de la especie, los expertos requieren realizar estudios más extensos sobre los factores que afectan las características nutricionales e industriales de la especie. Para determinar estos factores se deben descubrir correlaciones temporales a partir de fuentes de datos heterogéneas. Debido a la dificultad de explotar este tipo de datos no estandarizados ni agrupados, los métodos estadísticos tradicionales no son suficientes, por lo que se requiere herramientas permitan al experto identificar qué correlaciones temporales representan patrones frecuentes relevantes. El presente trabajo evalúa el uso de las técnicas de minería de patrones secuenciales y visualización espacial, con el objetivo de determinar si su aplicación facilita la obtención de patrones frecuentes relevantes a partir de distintas fuentes de datos heterogéneos relacionados a la Apodanthera Biflora. Para lograr este objetivo, se utiliza una metodología basada en el Descubrimiento de Conocimiento a partir de Bases de Datos (KDD por sus siglas en inglés), el cuál define fases para la selección, pre procesamiento, transformación, minería y evaluación (visualización) de los datos. Los resultados obtenidos demostraron que la técnica de minería de patrones secuenciales PrefixSpan y la visualización espacial, utilizando librerías de Google Maps API y D3 Js, permitieron a los expertos la obtención de patrones frecuentes relevantes. Así mismo, la técnica de transformación GIS para datos geográficos, y la técnica de discretización por entropía y frecuencia, han permitido el pre procesamiento de datos heterogéneos. A partir de las correlaciones descubiertas, los expertos identificaron patrones frecuentes relevantes, en las localidades de Chulucanas, Cerrato, El Morante, P. Mora y El Porvenir; principalmente relacionados a las características del suelo, precipitaciones y composición química de la raíz.