Matemáticas (Mag.)
URI permanente para esta colecciónhttp://54.81.141.168/handle/123456789/9102
Explorar
2 resultados
Resultados de Búsqueda
Ítem Texto completo enlazado Dominios de Fatou Bieberbach generados por automorfismos(Pontificia Universidad Católica del Perú, 2022-12-15) Puchoc Quispe, Jose Luis; Rosas Bazan, Rudy JoseEn la presente tesis se estudia una forma de encontrar dominios de Fatou-Bieberbach, a partir de un automorfismo de Cn. Específicamente estos dominios serán las cuencas de atracción hacia un punto fijo del automorfismo. El trabajo está basado en la investigación desarrollada por Jean Pierre Rosay y Walter Rudin en [RR88]. En el primer capítulo se desarrolla los preliminares que necesitamos para la demostración de los teoremas de los capítulos posteriores: básicamente, el estudio de aplicaciones holomorfas y teoría espectral de operadores lineales. En el segundo capítulo se prueba una versión débil del teorema principal de este trabajo. Este teorema nos brinda varios ejemplos interesantes de dominios de Fatou-Bieberbach en C2. Finalmente, en el capítulo 3 se desarrolla el teorema principal de la tesis. Se prueba que si un automorfismo tiene un punto fijo y en ese punto fijo su radio espectral es menor que uno, entonces la cuenca de atracción del punto fijo vía el autotomorfismo es un dominio de Fatou-Bieberbach.Ítem Texto completo enlazado Estudio de los métodos espectrales en ecuaciones diferenciales de una dimensión y su comparación con el método de diferencias finitas(Pontificia Universidad Católica del Perú, 2016-06-09) Sáenz López, David; Agapito Ruiz, Rubén ÁngelEn general, encontrar una solución analítica de una ecuación diferencial parcial no es fácil, y más aún cuando ésta ecuación es no lineal. Debido a esto, surgieron varios métodos numéricos para encontrar una solución aproximada a la deseada. Los métodos numéricos más conocidos son: • Métodos de Diferencias Finitas que tuvo su gran auge en la década de 1950. • Métodos de Elementos Finitos que tuvo su gran auge en la década de 1960. • Métodos Espectrales que tuvo su gran auge en la década de 1970. Mientras que los métodos de diferencias finitas dan soluciones aproximadas en los puntos de la malla computacional elegida, los métodos de elementos finitos dan aproximaciones polinomiales continuas o continuas por partes en regiones poligonales (generalmente triangulares en dos dimensiones), mientras que los métodos espectrales brindan soluciones aproximadas en la forma de polinomios sobre todo su dominio. Los métodos espectrales son una clase de discretización espacial para ecuaciones diferenciales. Las componentes claves para su formulación son las funciones base (llamadas también funciones de aproximación o expansión) y las funciones de prueba. Las funciones base se usan para dar una representación aproximada de la solución. Las funciones de prueba se usan para asegurar que la ecuación diferencial y quizás algunas condiciones de frontera se cumplan tanto como sea posible por la serie truncada de expansión. Esto se consigue minimizando, con respecto a una norma adecuada, el residuo producido por el uso de la expansión truncada en lugar de la solución exacta. Los métodos espectrales tienen un amplio uso en diferentes áreas como: teoría cuántica ([31], [36]) basado en la ecuación Schrödinger que proporciona la descripción teórica de numerosos sistemas en química y física; teoría cinética basada en la ecuación de Boltzmann ([27], [32]) o en la ecuación de Fokker-Planck ([5], [45]); problemas en mecánica de fluidos ([4], [20], [42]). También hay importantes aplicaciones en el escape átomos de la atmósfera del planeta ([14], [51]) como la pérdida de carga de partículas de la tierra ([33], [43]) y del sol [11]. El presente trabajo pretende contribuir en sentar los fundamentos sobre métodos espectrales, para que sean aplicados en futuras investigaciones más elaboradas, así como brindar los códigos de implementación (en Matlab), los cuales raramente se encuentran en forma explícita en la literatura. Este trabajo está organizado de la siguiente manera: el Capítulo 1 abarca las propiedades más importantes de los polinomios ortogonales; en particular, los polinomios de Chebyshev, los cuales son adecuados para representar funciones de dominio finito y sus relaciones de recurrencia asociadas. Además, se presenta un breve repaso de las fórmulas de cuadratura gaussiana. En el Capítulo 2, se presenta en forma detallada los métodos espectrales polinomiales, útiles para problemas con condiciones de frontera no periódicas. Presentamos los métodos de Galerkin, Tau y de Colocación. En el Capítulo 3 se da ejemplos de la implementación numérica de la ecuación del calor usando los métodos de diferencias finitas y los métodos espectrales, usando los polinomios de Chebyshev. Además, se brindan los detalles necesarios para implementar la ecuación de Burger usando los métodos espectrales.