Matemáticas (Mag.)

URI permanente para esta colecciónhttp://54.81.141.168/handle/123456789/9102

Explorar

Resultados de Búsqueda

Mostrando 1 - 3 de 3
  • Ítem
    Introducción a la desingularización y equisingularidad
    (Pontificia Universidad Católica del Perú, 2024-01-31) Díaz Díaz, Rosa Marivel; Neciosup Puican, Hernan
    Con el propósito de explicar la desingularización y la equisingularidad, este trabajo examina en detalle las nociones de explosiones básicas y cruzamientos normales iniciando con ejemplos en el plano real para luego formalizarlas. Al trabajar con funciones analíticas, se puede tener una uniformización local de la misma, y así construir transformaciones birracionales que son necesarias para el estudio de variedades algebraicas singulares. Para el problema de la equisingularidad se estudia la desingularización global y se define el homeomorfismo analítico por explosión. Se describen algunos invariantes analíticos, esto es propiedades que se mantienen invariantes con la equisingularidad. Se hace un breve estudio de la relación del polígono de Newton con la desingularización y la relación del homeomorfismo analítico por explosión con las funciones bi-Lipschitz. Este trabajo de tesis tiene el enfoque de los trabajos de Tze-Char Kuo y Laurentiu Paunescu.
  • Ítem
    Enumeración de singularidades de foliaciones holomorfas por curvas
    (Pontificia Universidad Católica del Perú, 2023-11-28) León Chávarri, Eduardo José; Fernandez Sanchez, Percy Braulio
    Una foliación holomorfa singular por curvas es una estructura geométrica definida sobre una variedad compleja, cuyo prototipo local es la familia de curvas integrales de un campo vectorial holomorfo. Los ceros de estos campos locales, denominados puntos singulares de la foliación, son especiales tanto desde un punto de vista topológico como analítico, ya que la curva integral que pasa por un punto singular es simplemente el punto singular mismo. En este trabajo, contaremos los puntos singulares de una foliación por curvas de una variedad compleja compacta. Pese a la naturaleza geométrica de nuestro problema, la principal herramienta que usaremos para resolverlo es la topología algebraica. Más precisamente, construiremos las clases de Chern ci(E) de un fibrado vectorial complejo E → M y las interpretaremos como obstrucciones a que existan una o varias secciones linealmente independientes de E. Aplicando esta interpretación a una variedad compleja compacta M y un fibrado tangente torcido E = T M ⊗ L, obtendremos el número de puntos singulares de una foliación definida por una sección holomorfa de E.
  • Ítem
    Resolución tórica de singularidades
    (Pontificia Universidad Católica del Perú, 2019-01-21) Suárez Sanchez, Jhon Franklin; Fernandez Sanchez, Percy Braulio
    En el presente trabajo de tesis, una variedad tórica afín es una variedad algebraica X que contiene un toro algebraico T ≈ (C ∗) n como un abierto de Zariski denso y verifica que la acción del toro T sobre sí mismo se extiende a una acción del toro T sobre X. En este trabajo las variedades tóricas al cual hacemos referencia, son variedades algebraicas que se construyen de una manera especial, utilizando conos σ; es entonces que podemos demostrar que siempre podremos encontrar una resolución de singularidades que es inducida por el refinamiento del cono σ. Por lo tanto, el problema de resolver las singularidades de las variedades tóricas se ha reducido al problema combinatorio de encontrar un refinamiento de un cono, por ello mostramos la construcción y resolución mediante ejemplos, no sin antes verificar todos los aspectos matemáticos que garanticen los objetivos de la tesis el cual es resolver singularidades de una variedad tórica.