Matemáticas (Mag.)

URI permanente para esta colecciónhttp://54.81.141.168/handle/123456789/9102

Explorar

Resultados de Búsqueda

Mostrando 1 - 4 de 4
  • Ítem
    Dominios de Fatou Bieberbach generados por automorfismos
    (Pontificia Universidad Católica del Perú, 2022-12-15) Puchoc Quispe, Jose Luis; Rosas Bazan, Rudy Jose
    En la presente tesis se estudia una forma de encontrar dominios de Fatou-Bieberbach, a partir de un automorfismo de Cn. Específicamente estos dominios serán las cuencas de atracción hacia un punto fijo del automorfismo. El trabajo está basado en la investigación desarrollada por Jean Pierre Rosay y Walter Rudin en [RR88]. En el primer capítulo se desarrolla los preliminares que necesitamos para la demostración de los teoremas de los capítulos posteriores: básicamente, el estudio de aplicaciones holomorfas y teoría espectral de operadores lineales. En el segundo capítulo se prueba una versión débil del teorema principal de este trabajo. Este teorema nos brinda varios ejemplos interesantes de dominios de Fatou-Bieberbach en C2. Finalmente, en el capítulo 3 se desarrolla el teorema principal de la tesis. Se prueba que si un automorfismo tiene un punto fijo y en ese punto fijo su radio espectral es menor que uno, entonces la cuenca de atracción del punto fijo vía el autotomorfismo es un dominio de Fatou-Bieberbach.
  • Ítem
    Caracterización diferenciable y holomorfa de superficies topológicamente planas
    (Pontificia Universidad Católica del Perú, 2020-01-16) Llanos Valencia, Héctor Aquiles; Zapata Samanez, Jesús Abad
    Las superficies (2 - variedad conexa) homeomorfas a un abierto de la esfera S2, son llamadas superficies topológicamente planas. En esta tesis, caracterizamos a estas superficies y estudiamos la conexión entre estas características. Es claro que el plano y la esfera son planas. Notemos que una característica que presentan estas dos superficies, es que ambas satisfacen el famoso Teorema de la Curva de Jordan, i.e., el complemento de cualquier curva cerrada simple en el plano o la esfera, tiene exactamente dos componentes conexas. Otra cualidad que se exhibe en estas dos superficies, es que toda 1-forma diferencial de clase C1 cerrada con soporte compacto necesariamente es exacta. Finalmente, describimos la relación que mantienen estas características, además, obtenemos un resultado de rigidez. A saber, una superficie de Riemann homeomorfa a un abierto de S2 es biholomorfa a una abierto de la esfera de Riemann.
  • Ítem
    Dinámica de las funciones racionales de una variable compleja
    (Pontificia Universidad Católica del Perú, 2015-07-03) Sueros Zarate, Jonathan Abrahan; Rosas Bazán, Rudy José
    El objetivo principal de la presente tesis es presentar una aplicación de los teoremas de Montel sobre familia normales en los sistemas dinámicos, para así poder caracterizar los conjuntos de Julia, denotados por JR, definidos a través de una aplicación R meromorfa sobre C. Primero haremos un estudio de las propiedades de las funciones meromorfas sobre el plano complejo C y el plano complejo extendido C, además estableceremos algunas métricas para poder estudiar la convergencia de las aplicaciones meromorfas. Lo anterior nos permite introducirnos a las familias normales para funciones holomorfas y para funciones meromorfas la cual posee muchas propiedades que son usadas en la caracterización del conjunto de Julia. Para facilitar algunos resultados es preciso usar la conjugada de funciones meromorfas sobre C a través de las transformaciones de Möbius definidas en el plano complejo extendido. También es necesario el estudio de los puntos periódicos de las funciones meromorfas sobre C obteniéndose una serie de propiedades que serán importantes en el estudio del conjunto Julia. Finalmente es vital el estudio del conjunto de puntos excepcionales la cual nos dan una serie de propiedades, para así poder dar una caracterización al conjunto de Julia. Dichas caracterizaciones son tales como, la invariancia del conjunto de Julia, JR, por la aplicación R y por su respectiva inversa; que el conjunto JR es igual a su conjunto de puntos de acumulación; que el conjunto JR coincide con C, siempre que JR posea algún punto interior; que JR coincide con la frontera de la cuenca atractora generada por un punto atractor α ; y el más importante que el conjunto de julia JR, coincide con el cierre de los puntos repulsores fijos de todos los órdenes .
  • Ítem
    Familias normales y grupos discontinuos
    (Pontificia Universidad Católica del Perú, 2013-12-09) Tamara Albino, Jimmy Rainer; Rosas Bazán, Rudy José
    El objetivo principal de la presente tesis es presentar la teoría de las familias normales y mostrar su importancia en la teoría de grupos discontinuos y discretos. Primero haremos un estudio de las propiedades de las transformaciones de Moebius y luego su clasificación por conjugación. Para así introducirnos en la teoría de familias normales para funciones holomorfas y meromorfas. A partir de ello probaremos algunos resultados de normalidad para transformaciones de Moebius en especial el teorema fundamental de normalidad para transformaciones de Moebius. Finalmente veremos que un grupo Γ de transformaciones de Moebius es discontinuo en un punto α si y solo si Γ es discreto y forma una familia normal en α.