Matemáticas (Mag.)

URI permanente para esta colecciónhttp://54.81.141.168/handle/123456789/9102

Explorar

Resultados de Búsqueda

Mostrando 1 - 2 de 2
  • Ítem
    Espacios fibrados, clases características y el isomorfismo de Thom
    (Pontificia Universidad Católica del Perú, 2013-10-10) Arroyo Flores, Merwil Luciano; Fernández Pilco, Percy
    La Topología Algebraica es una rama de las matemáticas, donde la idea fundamental es asociar objetos algebraicos a los espacios topológicos y/o variedades, de manera que la estructura asociada sea un invariante, en ese sentido estudiando las propiedades algebraicas del objeto asociado podemos extraer consecuencias sobre la geometría y la topología del espacio. La cohomología de Rham y la cohomología con soporte compacto, son los dos principales invariantes topológicos de una variedad C∞, en ambos casos son herramientas algebraicas, que se trata de cierta estructura algebraica extraída de una variedad diferenciable, permitirá distinguir si dos variedades son o no homeomorfas. El cálculo de los grupos de cohomología de una variedad no es tan fácil, con esa idea se introdujo una buena técnica como es la secuencia de Mayer Vietoris para ambos invariantes introducida por Leopoldo Vietoris(1850), esta técnica calcula grupos de cohomología de una variedad que es posible expresarla como la unión de dos conjuntos abiertos no necesariamente disjuntos, entonces así se puede determinar los grupos de cohomología de la variedad en términos de los grupos de cohomología de estos abiertos. Así mismo y con esa misma necesidad se obtuvo la Dualidad de Poincaré para una variedad orientable de dimensión, que establece el isomorfismo entre el grupo de cohomología de Rham y el dual de la cohomología con soporte compacto, éste isomorfismo es mucho más importante cuando la variedad orientable no es compacta. Con el propósito de seguir buscando más objetos algebraicos que permitan proporcionar más información geométrica y/o topológica del espacio se empieza estudiar la variedad producto, cuya generalización conduce a la variedad producto local en ese sentido se obtiene una nueva variedad a partir de otra(espacio base) llamado(Espacio Fibrado) donde su espacio total está formado por fibras(sub-variedades) en particular y en el que más trabajaremos es cuando las fibras sean espacios vectoriales a estos fibrados los llamaremos Fibrados Vectoriales ya teniendo un fibrado y la noción de paralelismo en el espacio ambiente R n se generaliza a espacios fibrados y se obtiene un operador algebraico llamada conexión, asociada a éste tenemos definida la curvatura. Este trabajo está dividido en cinco capítulos; el primer capítulo se hace una exposición ligera de la cohomología de Rham así como una exposición de la secuencia de Mayer Vietoris y lo más importante la Dualidad de Poincaré que son los pilares fundamentales en el éxito de este trabajo. En el segundo y tercer capítulo se hace un estudio de los espacios fibrados pero concentrándonos más en los fibrados vectoriales las operaciones entre ellos y la conexión y curvatura ´este ´último es la base fundamental para las clases características. En el capítulo cuatro empezamos a hablar de los polinomios invariantes que son una herramienta clásica que permite hacer un estudio detallado de las clases características principalmente en las Clases de Chern para fibrados vectoriales complejos la misma que se construye en base a la 2-forma de curvatura. Finalmente en el capítulo cinco se empieza trabajando una herramienta que permite calcular los grupos de cohomología de un espacio producto llamada la Fórmula de Künneth, posteriormente se construye un nuevo fibrado llamado el fibrado de esferas que se usará en poder probar el isomorfismo de Thom, además se define el índice de una sección y se concluye con el teorema generalizado de Gauss-Bonnet. El trabajo ha sido hecho en base a mucho esfuerzo, dedicación, y doy gracias a Dios por haberme guiado siempre y así poder lograr todas las metas trazadas . Agradezco anticipadamente a los lectores por las observaciones que tengan a bien formular.
  • Ítem
    Deformaciones de estructuras complejas
    (Pontificia Universidad Católica del Perú, 2013-10-04) Villareal Montenegro, Yuliana; Fernández Pilco, Percy
    Resumen Este trabajo se describe una parte importante de los descubrimientos obtenidos durante el siglo XX, es una introducción a la teoría de variedades complejas y sus deformaciones. Intuitivamente la deformación de una variedad compleja compacta M, compuesta de un número finito de cartas coordenadas, viene dada por el desplazamiento de estas cartas. Definimos M= {Mt : t ∈ B} y ̟ :M→ B de manera que el desplazamiento del cual hablo se llevará a cabo a través de la aplicación KSt que va del espacio tangente de una variedad compleja B, denominado espacio base de una familia diferenciable de variedades complejas compactas (M,B,̟), al primer grupo de cohomología de Mt, es decir KSt : Tt(B) → H1(Mt,_t), donde _ es el haz de gérmenes de campos vectoriales holomorfos sobre Mt, a ésta aplicación se le llama La Aplicación Infinitesimal Kodaira-Spencer, que nos permitirá medir las variaciones de primer orden de la estructura compleja. En consecuencia, dada (M,B,̟) una familia analítica compleja de variedades complejas compactas, se tiene que las deformaciones infinitesimales _ = dMt/dt de Mt = ̟−1(t) son ciertos elementos de H1(Mt,_t). Por otro lado, dada una variedad compleja compacta M, si (M,B,̟) con 0 ⊂ B ⊂ C es una familia analítica compleja tal que M = ̟−1(_ 0). ¿Podemos decir que dMt/dt _ t ∈ H1(M,_) es una deformación infinitesimal de M? Pues no está claro que cada θ deba surgir de ésta manera. Resulta que si θ surgiese así, entonces tiene que cumplir con ciertas condiciones adicionales. Si existen clases de cohomología θ que no cumplan las condiciones dicionales, entonces θ no son deformaciones infinitesimales de M, si no, son llamados Obstrucciones a la deformación de M. Esta teoría de la obstrucción, garantiza la existencia de una familia analítica compleja para cualquier H1(M,_). Finalmente, hablaremos sobre el Número de Moduli, m(M), que viene a ser el número de parámetros efectivos de la familia analítica compleja (M,B,̟) con M = ̟−1(0), que contiene todas las deformaciones suficientemente pequeñas para M y nos da a conocer cuántas de éstas estructuras o deformaciones son iguales y diferentes.