Matemáticas (Mag.)

URI permanente para esta colecciónhttp://54.81.141.168/handle/123456789/9102

Explorar

Resultados de Búsqueda

Mostrando 1 - 1 de 1
  • Ítem
    Deformaciones de estructuras complejas
    (Pontificia Universidad Católica del Perú, 2013-10-04) Villareal Montenegro, Yuliana; Fernández Pilco, Percy
    Resumen Este trabajo se describe una parte importante de los descubrimientos obtenidos durante el siglo XX, es una introducción a la teoría de variedades complejas y sus deformaciones. Intuitivamente la deformación de una variedad compleja compacta M, compuesta de un número finito de cartas coordenadas, viene dada por el desplazamiento de estas cartas. Definimos M= {Mt : t ∈ B} y ̟ :M→ B de manera que el desplazamiento del cual hablo se llevará a cabo a través de la aplicación KSt que va del espacio tangente de una variedad compleja B, denominado espacio base de una familia diferenciable de variedades complejas compactas (M,B,̟), al primer grupo de cohomología de Mt, es decir KSt : Tt(B) → H1(Mt,_t), donde _ es el haz de gérmenes de campos vectoriales holomorfos sobre Mt, a ésta aplicación se le llama La Aplicación Infinitesimal Kodaira-Spencer, que nos permitirá medir las variaciones de primer orden de la estructura compleja. En consecuencia, dada (M,B,̟) una familia analítica compleja de variedades complejas compactas, se tiene que las deformaciones infinitesimales _ = dMt/dt de Mt = ̟−1(t) son ciertos elementos de H1(Mt,_t). Por otro lado, dada una variedad compleja compacta M, si (M,B,̟) con 0 ⊂ B ⊂ C es una familia analítica compleja tal que M = ̟−1(_ 0). ¿Podemos decir que dMt/dt _ t ∈ H1(M,_) es una deformación infinitesimal de M? Pues no está claro que cada θ deba surgir de ésta manera. Resulta que si θ surgiese así, entonces tiene que cumplir con ciertas condiciones adicionales. Si existen clases de cohomología θ que no cumplan las condiciones dicionales, entonces θ no son deformaciones infinitesimales de M, si no, son llamados Obstrucciones a la deformación de M. Esta teoría de la obstrucción, garantiza la existencia de una familia analítica compleja para cualquier H1(M,_). Finalmente, hablaremos sobre el Número de Moduli, m(M), que viene a ser el número de parámetros efectivos de la familia analítica compleja (M,B,̟) con M = ̟−1(0), que contiene todas las deformaciones suficientemente pequeñas para M y nos da a conocer cuántas de éstas estructuras o deformaciones son iguales y diferentes.