Matemáticas (Mag.)

URI permanente para esta colecciónhttp://54.81.141.168/handle/123456789/9102

Explorar

Resultados de Búsqueda

Mostrando 1 - 2 de 2
  • Ítem
    Aspectos geométricos de la envoltura convexa del movimiento browniano planar
    (Pontificia Universidad Católica del Perú, 2021-01-19) Quesada Vargas, Juan Carlos; Farfán Vargas, Jonathan Samuel
    En el presente trabajo de tesis estudiaremos algunos aspectos geométricos de la envoltura convexa de una trayectoria del movimiento browniano planar en un determinado intervalo de tiempo. De manera más precisa, estudiaremos el perímetro, el área y el diámetro de dicha envoltura convexa. En el primer capítulo, revisaremos el movimiento browniano planar y algunas de sus propiedades tales como el principio de reflexión, la ley de la terna de Lévy y la ley del arcoseno que nos servirá como base teórica para justificar las cotas establecidas por James McRedmond y Chang Xu para estimar el diámetro promedio de dicha envoltura convexa. En el segundo capítulo se estudiarán las principales propiedades de cuerpos convexos y la envoltura convexa de una curva donde se desarrollará las propiedades que nos permitan justificar de manera más clara la fórmula de Cauchy para el perímetro y el área de un cuerpo convexo. En el tercer capítulo se utilizará como teorema principal la fórmula de Cauchy para justificar lo que se encontró de manera explícita tanto para el perímetro promedio y el área promedio de la envoltura convexa del recorrido de un movimiento browniano planar hasta el instante t = 1. Por último, en el cuarto capítulo se utilizará la terna de Lévy como teorema principal para el desarrollo de la estimación del diámetro promedio de dicha envoltura convexa.
  • Ítem
    Valuación de opciones para retornos de Levy simétricos
    (Pontificia Universidad Católica del Perú, 2016-11-14) Grandez Vargas, Rodrigo Franklin; Farfán Vargas, Jonathan Samuel
    El trabajo consiste en el estudio de un modelo de valuación de opciones europeas de compra, el cual asume que la dinámica del precio del activo financiero subyacente está caracterizada por un proceso de Lévy simétrico. El modelo busca capturar la evidencia empírica mostrada por los precios de los activos financieros. Este modelo es trabajado en [12], artículo que será seguido de cerca. La particularidad del modelo consiste en incorporar procesos estocásticos de salto con distribuciones marginales simétricas, lo cual reproduce de manera más fiel la realidad. En este trabajo, primero se revisa en detalle los principales resultados obtenidos en [12], más precisamente, se revisa la definición de medida martingala equivalente natural en el contexto del modelo. Se estudia la existencia y unicidad de la medida martingala equivalente natural (MMEN). Luego, se usa esta medida para obtener el precio de la opción y calcular los parámetros de la distribución simétrica bajo esta medida MMEN y así obtener una fórmula generalizada tipo Black-Scholes. Además, se realizan aplicaciones con procesos de Lévy específicos tales como Varianza Gamma Simétrico, Normal Inverso Gaussiano Simétrico. Segundo, para extender las aplicaciones proporcionadas en [12], se propone una aplicación adicional. Así, se elige el proceso de Meixner Simétrico (MS) para describir la dinámica del activo subyacente y obtener el precio de la opción de compra europea en el contexto del modelo MS. Finalmente, se realiza simulaciones numéricas del precio de las opciones europeas bajo los tres modelos estudiados, para luego comparar dichos precios con el precio obtenido en el modelo clásico de Black-Scholes.