Matemáticas (Mag.)
URI permanente para esta colecciónhttp://54.81.141.168/handle/123456789/9102
Explorar
Ítem Texto completo enlazado Comportamiento asintótico de la solución global de un sistema dispersivo no lineal de tipo Benjamin-Bona-Mahony(Pontificia Universidad Católica del Perú, 2013-04-15) Vega Guadalupe, Segundo Teófilo; Montealegre Scott, JuanEl objetivo de este trabajo consiste en estudiar el comportamiento asintótico de las soluciones de un sistema dispersivo no lineal de tipo Benjamin-Bona- Mahony cuando t se aproxima al infinito.Ítem Texto completo enlazado Comportamiento asintótico de la solución de un sistema acoplado de ecuaciones de Korteweg-de Vries generalizadas(Pontificia Universidad Católica del Perú, 2011-06-14) Cruz Yupanqui, GladysEl objetivo principal en este trabajo es estudiar el comportamiento asint´otico en el tiempo de las soluciones del problema de valor inicial ∂ᵘt+ ∂ᶟᵪu + α∂ᶟᵪv + uᵖ∂ᵪu + vp∂ᵛᵪ = 0 ∂tᵛ + ∂ᶟᵪ v + α∂ᶟᵪu + vᵖ∂ᵪᵛ + ∂ᵪ (uvᵖ) = 0 u (x, 0) = u₀ v (x, 0) = v₀, donde α es una constante real menor que 1. El sistema se considera para x ∈ R y t ≥ 0. El exponente p es un entero mayor o igual a 1. El sistema tiene la estructura de un par de ecuaciones de Korteweg-de Vries generalizadas acopladas a través de ambos efectos dispersivos y no lineales, y es un caso particular del sistema derivado por Gear y Grimshaw como un modelo para describir la interacción fuerte de ondas largas débilmente no lineales. Para esto se demuestra, mediante la teoría de T. Kato para ecuaciones de evolución cuasi lineales del tipo hiperbólico, que el problema está bien formulado localmente en los espacios clásicos de Sobolev Hs (R) × Hs (R) para s ≥ 3. Usando el método de la fase estacionaria analizamos la parte lineal del sistema y entonces usando la versión integral de nuestro problema se genera el siguiente resultado: existe una constante C > 0 tal que: II(u, v) (t)IIH³͚ ≤ C (1 + t)-⅓ cuando t → ∞, suponiendo que el dato inicial en t = 0 satisface las condiciones para p ≥ 4 y |α| < 1.