Explorando por Autor "Villagómez Molero, Diego"
Mostrando 1 - 20 de 35
- Resultados por página
- Opciones de ordenación
Ítem Texto completo enlazado Análisis comparativo del diseño de espesor de la capa de rodadura de pavimentos rígidos según las metodologías AASHTO 93 y PCA 84(Pontificia Universidad Católica del Perú, 2021-09-09) Solano Cahuaya, Luz Daniela; Espinoza Nieto, Lucía Florencia; Zapata Chávez, Renzo Sebastián; Zevillanos Begazo, Francis Joao; Mogollón Rivera, Joao Emanuel; Villagómez Molero, DiegoEn la presente investigación se realiza una comparación teórica-técnica de los métodos AASHTO 93 y PCA 84 para el diseño de los espesores de la capa de rodadura de pavimentos rígidos. El estudio de las metodologías de diseño de pavimentos es necesario para lograr un correcto diseño cumpliendo los estándares de calidad adecuados según los requerimientos de cada vía proyectada. Para lograrlo, la investigación presentada a continuación describirá y comparará los requerimientos y parámetros de los métodos en análisis y diseñará teóricamente, para cada una de las metodologías, espesores de la capa superficial para pavimentos con diferentes características. Con ello, se identifica las ventajas o desventajas de cada uno de estos. De acuerdo a la comparación teórica, a pesar que ambos métodos consideran parámetros muy similares entre sí, se obtiene que los espesores obtenidos con el método AASHTO 93 son mayores que los obtenidos con el PCA y, en consecuencia, se puede considerar a AASHTO 93 como más conservador y a PCA 84 como más económico. Sin embargo, la Norma Peruana E.050 Suelos y Cimentaciones, recomienda ambas metodologías para el diseño de pavimentos rígidos como el analizado en la investigación por lo que se puede usar adecuadamente ambos métodos teniendo en cuenta las consideraciones de cada uno.Ítem Texto completo enlazado Análisis de factibilidad del uso del acero en sistemas estructurales de edificios(Pontificia Universidad Católica del Perú, 2022-02-20) Prada Conde, Grecia Chijei; Malca Valderrama, Orlando Javier; Lira Vargas, Gerardo Antonio; Olarte Bustinza, Jafet Fabricio; Díaz Cobeña, Marcelo Eduardo; Villagómez Molero, DiegoEl presente trabajo de investigación consiste en determinar las principales razones por las cuales, el acero debería ser una alternativa importante para el diseño y construcción de sistemas estructurales sismorresistentes de edificios en el Perú. En primera instancia, la investigación consistió en revisar el panorama actual de la construcción en el país, determinando las principales causas por las que se sigue masificando el uso del concreto armado para el diseño y construcción de sistemas estructurales de edificios, sin dar paso al uso de materiales con propiedades estructurales tan eficientes como el acero. Luego, se establecieron las principales ventajas de este material como elemento estructural sismorresistente; lo cual fue el punto de partida para el análisis de factibilidad del uso del acero en los sistemas estructurales de edificios. Asimismo, la presente investigación tuvo una metodología cualitativa, para lo cual se revisaron numerosas fuentes bibliográficas, extrayendo apartados que resulten importantes para el desarrollo de la investigación. En ese sentido, se abordó el trabajo de investigación con los siguientes puntos principales: - Revisión de Literatura. Se presenta de manera breve la historia del uso del acero como material de construcción, así como sus principales usos en la actual industria peruana, se resume de manera breve la normativa nacional e internacional para el diseño de sistemas estructurales de acero y se enumera las principales propiedades estructurales del acero. - Desarrollo de la investigación. Se presenta las principales consideraciones para el diseño de estructuras de acero, donde se mencionan las consideraciones para la estructuración, cargas, métodos y verificaciones de diseño; además, los principales sistemas estructurales planteados en la normativa. Por otro lado, se identifica y desarrolla las principales ventajas del uso del acero como material de miembros estructurales y se desarrolla un análisis de factibilidad para su uso en la construcción. La investigación desarrollada permitió obtener conclusiones y recomendaciones finales, que se detallan en el capítulo final del presente trabajo de investigación. Lo cual, pretende ser de utilidad para estudiantes y empresas del sector construcción, como una fuente inicial de información para detectar los principales problemas y soluciones ante el actual estado de estancamiento en el desarrollo de edificios de acero estructural en el país. De modo que, se brinde un impulso para el desarrollo, especialización y masificación del acero como material en sistemas estructurales sismorresistentes de edificios.Ítem Texto completo enlazado Análisis estructural y diseño de una edificación multifamiliar de cinco pisos con muros de ductilidad limitada(Pontificia Universidad Católica del Perú, 2021-02-17) Perez Neyra, Carlos; Villagómez Molero, DiegoLos edificios de muros de ductilidad limitada (EMDL) surgieron ante la necesidad de rápida construcción y bajo costo. Este sistema es conformado por muros y losas de pequeño espesor y una platea de cimentación de concreto armado.En la actualidad los EMDL siguen construyéndose en nuestro medio a pesar de que su máximo uso fue entre los años 2004 y 2011. Este sistema facilita el encofrado por la igualdad de espesor en los muros y al ser repetitivo genera una curva de aprendizaje continua y progresiva. Es importante realizar un correcto análisis y diseño en el sistema estructural de Edificios de Muros de Ductilidad Limitada (EMDL), dado que así soportará las cargas de gravedad y sismo con buen desempeño. Un correcto diseño brinda seguridad e implica ahorro dado que se evita el sobredimensionamiento y futuros daños ante solicitaciones más bajas a lo diseñado. En el presente trabajo se realizó el análisis y diseño estructural de un edificio multifamiliar de cincos pisos ubicado en el distrito de Carabayllo. El sistema estructural utilizado es de Muros de Ductilidad Limitada (MDL). Los muros tienen espesores de 10 cm. Los sistemas de techos son losas macizas de 10cm y 20cm de espesor. Además de una platea de cimentación de concreto armado de 35cm de espesor. Para el análisis estructural por cargas de gravedad y sismo se desarrollará un modelo compu-tacional en el software ETABS. Las solicitaciones de carga se realiza conforme los lineamientos de la Norma Técnica de Cargas E020. Se utiliza la Norma Técnica de Diseño Sismorresistente (E030) como guía para el análisis sísmico. Respecto al diseño, se realiza acorde a las especifi-caciones de la Norma Técnica de Diseño en Concreto Armado (E060). Como temas complementarios se realizó un procedimiento para el análisis de la zona de con-finamiento en los muros de ductilidad limitada y se comprobó que no es necesario su confina-miento. Además, se realizó el metrado del acero y concreto para que sirva de referencia ligado al costo. El ratio de concreto del edificio es de 0.36 m3/m2 y el ratio de acero de 17.5 kg/m2 construido. Se concluye que dada la gran densidad de muros, el edificio satisface el análisis por desplazamiento con una deriva de 0.64%en la dirección X y una deriva de 1.55 % en la dirección Y, además dada la gran densidad de muros por resistencia cada muro tiene poca demanda.Ítem Texto completo enlazado Análisis y comparación de técnicas de reforzamiento estructural en centros educativos 780 pre mediante el método Choosing By Advantage(Pontificia Universidad Católica del Perú, 2021-02-03) Ariza Gómez, Ricardo Agustín; Matallana Curi, Alessandro Adolfo; Mora Ordoñez, Claudia Cristel; Rebata Hilario, Mauricio Andrés; Rupay Hospinal, Ricardo Iván; Villagómez Molero, DiegoLos colegios diseñados y construidos desde la década de los 50 hasta antes de la actualización de la norma de diseño sismorresistente (NDSR) del año 1997 muestran grandes deficiencias en el diseño estructural, las cuales no aseguran un comportamiento idóneo para tal tipo de edificación generando un alto grado de vulnerabilidad estructural. El diseño estructural de dichos colegios presentaba baja rigidez en la dirección longitudinal, así como falta de juntas sísmicas entre la tabiquería y columnas. Debido a dichas deficiencias, se presentaron daños considerables en los colegios ante distintos sismos suscitados durante dicha época. El presente trabajo de investigación consistirá en la descripción y análisis de cinco diferentes técnicas de reforzamiento estructural que se podrían aplicar en colegios: • Reforzamiento con fibra de carbono. • Reforzamiento mediante la intervención de columnas (recrecido y encamisado). • Reforzamiento mediante la adición de nuevas columnas de concreto armado. • Reforzamiento mediante muretes de albañilería reforzados con malla en ambas caras. • Reforzamiento mediante la incorporación de pórticos metálicos. A partir del análisis cualitativo de las técnicas de reforzamiento, en la que se tomaran en cuenta criterios de rigidez, desplazamientos y modificación de la arquitectura, se realizará un análisis comparativo empleando el método Choosing by Advantages (CBA) y se estimarán presupuestos de las técnicas desarrolladas en la comparación con el fin de conocer, también, la alternativa más económica. Finalmente, se mostrarán las conclusiones de las estimaciones y observaciones comprendidas de todas las técnicas, así como también, las conclusiones del método CBA.Ítem Texto completo enlazado Análisis y diseño de reservorio circular apoyado de concreto armado(Pontificia Universidad Católica del Perú, 2021-03-12) Ramos Ascue, Jorge Luis; Villagómez Molero, DiegoLos reservorios son elementos de almacenamiento de agua que cumplen un papel importante en cualquier sistema de distribución de agua, esto hace que su análisis y diseño estructural sea muy importante a fin de garantizar el adecuado funcionamiento de estas estructuras ante las diferentes cargas y condiciones de funcionamiento a las que sean sometidas y con ello asegurar el funcionamiento de los sistemas de distribución a los cuales pertenezcan. El Reglamento Nacional de Edificaciones actualmente no contempla alguna normativa específica para el análisis o el diseño estructural de este tipo de estructuras especiales; por esta razón, se utilizaron la norma E.030 de diseño sismorresistente y la norma E.060 de diseño de concreto armado y se complementaron con el uso de las normas del American Concrete Institute ACI 350-06 (Code requirements for environmental engineering concrete structures and commentary) y ACI 350.3-06 (Seismic Design of Liquid-Containing Concrete Structures and Comentary) los cuales son específicos para este tipo de estructuras. El análisis realizado al reservorio circular muestra que el periodo impulsivo de la estructura fue de 0.038 segundos y el periodo convectivo fue de 5.22 segundos. El cortante basal estático obtenido fue de 913 toneladas y el cortante basal dinámico fue de 707 toneladas. Con esta información, y como sugiere la norma E.030, se escaló el cortante dinámico al 80 % del cortante estático para los fines de diseño de los elementos de concreto armado.Ítem Texto completo enlazado Análisis y diseño en concreto armado de un reservorio circular apoyado sobre el suelo(Pontificia Universidad Católica del Perú, 2023-03-09) Mateo Reyes, Elis Milagros; Villagómez Molero, DiegoEn el presente trabajo de suficiencia profesional, se realiza el predimensionamiento, análisis y diseño de un reservorio de almacenamiento de agua potable de tipo circular, apoyado sobre el terreno. Este se ubica en la ciudad de Lima y tiene una capacidad de almacenamiento de 2500 m3 de agua, con 22 m de diámetro y 7.5 m de alto. El tanque se encuentra sobre un terreno cuyo módulo de balasto es 2.5 kg/cm3 y el perfil del suelo es del tipo S1. Con los datos presentados, se realizó el predimensionamiento según el ACI 350-06. Luego, se elaboró un modelo del reservorio utilizando el software SAP2000 para la obtención de fuerzas y esfuerzos estructurales del tanque, y se realizó el análisis sísmico. Con estos valores, se procedió a realizar el diseño de la cúpula esférica, paredes cilíndricas, anillos y la losa de fondo del reservorio. Para este informe, se consideraron los requerimientos del Instituto Americano del Concreto (ACI) y las normas peruanas (E.030 Diseño sismorresistente, E.050 Suelos y cimentaciones, y E.060 Concreto Armado).Ítem Texto completo enlazado Análisis y diseño estructural de un edificio de concreto armado de 8 pisos en el distrito de Barranco(Pontificia Universidad Católica del Perú, 2021-07-19) Cáceres Espinoza, Christopher Aaron Andy; Panana Quispe, Juan Jefry; Villagómez Molero, DiegoEste proyecto consiste en desarrollar el diseño estructural de un edificio multifamiliar de 8 pisos ubicado en el distrito de Barranco, provincia y departamento de Lima. El terreno tiene un área de 620 m2 y el suelo cuenta con una resistencia o capacidad portante de 4 kg/cm2. El edificio cuenta con un primer piso en donde se encuentra un local destinado a comercio, lobby, gimnasio, bussiness-center, hall, vestíbulo, un área de recreación con jardín y parrilla y un departamento; continúan siete pisos típicos con tres departamentos por nivel y un vestíbulo con acceso a estos tres; dando un total de veintidós departamentos. Cada departamento cuenta con sala-comedor, cocina integrada, lavandería, terraza, baños y de uno a tres dormitorios. Además, para acceder a los pisos superiores se está colocando dos ascensores y también la escalera de emergencia que se desplaza desde el primer piso hasta el octavo piso. Se optó por un sistema estructural mixto compuesto por muros de corte y pórticos de concreto armado. Los elementos verticales se conectan a través de vigas de concreto armado y entre ellas se colocará losas aligeradas o losas macizas de 20 cm de espesor. La cimentación será con zapatas aisladas, combinadas y conectadas. La arquitectura del proyecto cumple con las normas expuestas por el Reglamento Nacional de Edificaciones (RNE) y de igual manera el análisis y diseño estructural. El peso de los elementos estructurales y las cargas que soportarán estarán definidas según la Norma E.020 de Cargas. Para el análisis sísmico se seguirán los lineamientos expuestos en la Norma E.030 de diseño Sismorresistente y utilizaremos el programa ETABS 2018 para el análisis dinámico. El diseño se desarrollará a partir de los lineamientos de la Norma E.060 de Diseño en Concreto Armado. Como resultante de lo que conlleva el proyecto de tesis, se entregará los juegos de planos para que puedan ser utilizados al momento de iniciar la obra. Entre ellos estarán el plano de techos, placas, columnas, vigas, cimentación, escaleras y cisterna.Ítem Texto completo enlazado Análisis y diseño estructural de un edificio multifamiliar de diez pisos de concreto armado(Pontificia Universidad Católica del Perú, 2020-12-14) Piccone Martinez, Piero Angelo; Villagómez Molero, DiegoEl presente trabajo de tesis desarrolla el análisis sísmico y diseño estructural de un edificio de diez pisos de concreto armado destinado a uso multifamiliar, ubicado en el distrito de Miraflores en la ciudad de Lima. El edificio posee un área techada de 3473𝑚2 y cuenta con un primer piso que está destinado a áreas de recepción y áreas de uso común como la sala de juegos, las salas de reuniones y el gimnasio. Desde el segundo hasta el décimo piso se tiene viviendas de departamentos. El edificio cuenta con un sistema estructural compuesto de muros estructurales en ambas direcciones. Además, posee losas macizas y aligeradas de 20 cm de espesor, vigas de peralte de 60 cm y de anchos de 25 cm y 30 cm, columnas con 30 cm de ancho y placas con espesores entre 20 a 30 cm. Dado que la edificación se encuentra en el distrito de Miraflores, se asume una capacidad portante del suelo de 4 kg/𝑐𝑚2. Por este motivo, la cimentación presenta zapatas aisladas, combinadas y conectadas según el tipo de elemento que soportan. El análisis y diseño se realiza de acuerdo a los requerimientos que señala el Reglamento Nacional de Edificaciones (RNE), de esta forma, se cumplen los requisitos sismorresistentes expuestos por la norma E.030 de Diseño Sismorresistente. Del mismo modo, se realiza el diseño estructural de los elementos de concreto armado siguiendo los lineamientos establecidos por la norma E.060 de Diseño de Concreto Armado. Cabe resaltar que, para realizar los análisis correspondientes, el edificio se modela haciendo uso del software ETABS.Ítem Texto completo enlazado Análisis y diseño estructural de un reservorio circular de 2500 m3 de volumen(Pontificia Universidad Católica del Perú, 2022-05-02) Soto Crisostoma, David Michael; Villagómez Molero, DiegoEl presente trabajo tiene como finalidad analizar y diseñar en concreto armado un reservorio circular para el almacenamiento de agua potable de 2 500 m3, el cual estará apoyado sobre el suelo. La estructura tendrá una base con un diámetro de 22 m, una altura de 7.5 m y un tirante de agua de 6.5 m para alcanzar el volumen solicitado. Por otro lado, para el desarrollo del presente trabajo, el estudio de mecánica de suelos considera un suelo tipo S1 con un módulo de balasto igual de 2.5 kg/cm3. El diseño de la estructura se basa en las normas ACI 350.3-06 para el análisis sísmico y la norma ACI 350.01 para los factores de durabilidad de la estructura. Adicionalmente, se emplean normas del reglamento nacional de edificaciones como la E020 para las consideraciones de cargas, la norma E060 para el diseño en concreto armado y E030 para el espectro de diseño. El resultado del diseño estructural desarrollado implica que las paredes tengan un espesor de 0.45 m, la cúpula esférica tenga un espesor de 0.07 m y una flecha de 2.20 m. Por lo tanto, como resultado del presente trabajo, se obtendrán los diseños de los elementos estructurales del reservorio circular y se presentarán los planos correspondientes al diseño.Ítem Texto completo enlazado Análisis y diseño estructural de un reservorio circular de almacenamiento de agua de 2700 m3 ubicado en Lima(Pontificia Universidad Católica del Perú, 2024-06-06) Rojas Buendia, Luis Enrique; Villagómez Molero, DiegoEste presente trabajo tiene como finalidad presentar el proceso realizado de análisis y diseño de un reservorio circular de almacenamiento de agua de 2700 m3 de concreto armado apoyado en el terreno ubicado en la ciudad de Lima. Por requerimientos hidráulicos, posee dicha capacidad, de 6.5 m de altura y diámetro de 25 m en la base, la cual se apoya sobre un perfil de suelo considerado S1, de módulo de balasto de 2.0 kg/cm3. Este proceso conllevó a realizar el predimensionamiento de la estructura para iniciar un modelo tridimensional. Se realizó el análisis sísmico a través del método dinámico y, finalmente, se desarrolla el diseño de la estructura. Los elementos estructurales que conforman el reservorio son los siguientes: cúpula esférica, las paredes cilíndricas de la cuba, la viga tipo anillo que une a la cúpula y muro cilíndrico, y la losa de cimentación. El análisis estructural se realizó en el software de elementos de finitos Sap2000. Para ello, se consideró las normas E020, E030-2018, E060, ACI350-06 y el ACI 350.3-06. De manera similar, dichas normas se utilizaron para el diseño estructural de la estructura. Cabe resaltar que parámetros como la durabilidad, calidad de concreto, verificaciones en servicio, modelo simplificado masa resorte (Housner, 1963), son varios de los factores que intervienen en su análisis y diseño. Finalmente, se obtiene las dimensiones la estructura: pared circular y losa de cimentación de 45 cm espesor, cúpula de 7 cm de espesor y una flecha 2.80, y la viga de sección 60x40 cm. Se presenta como resultado el diseño de estos elementos y los planos correspondientes.Ítem Texto completo enlazado Análisis y diseño estructural de un reservorio circular de concreto armado de 2500 m3(Pontificia Universidad Católica del Perú, 2024-04-03) Gutiérrez Alvarez, Adrian Rafael; Villagómez Molero, DiegoEl presente trabajo tiene como propósito presentar el predimensionamiento, análisis y diseño estructural de un reservorio con una capacidad de 2500 m3 ubicado en la ciudad de Lima. Éste será construido de concreto armado y se encuentra apoyado en un suelo de tipo S2 con un módulo de balasto de 2.5 kg/cm3. Asimismo, el reservorio tendrá 22 m de diámetro, una altura de 7.50 metros y un tirante de agua de 6.50 metros. Por otra parte, para el análisis y diseño del reservorio, se tomaron en cuenta las regulaciones del diseño sismorresistente (Norma E.030), la normativa de concreto (Norma E.060), la Norma E.020 y los códigos ACI 350-06 y ACI350.3-06. Al finalizar el proceso de diseño se determinaron los espesores de las paredes y fondo del reservorio en 40 cm. La cúpula fue diseñada con un espesor de 0.07 m y una flecha de 2.35 m. Después de completar el diseño, se llevó a cabo una verificación de fisuración por flexión y tracción directa. Finalmente, se presentan los planos con los diseños obtenidos de los distintos componentes del reservorio.Ítem Texto completo enlazado Comparación de edificios conformados por sistemas estructurales de acero en el Perú y en el extranjero(Pontificia Universidad Católica del Perú, 2022-02-20) Sánchez Carrasco, Ivanna Franccesca; Dávila Andía, Breyton Luis; Mora Chihuantito, Christian Gustavo; Sulluchuco Otake, Roy; Gonzales Santillana, Jim Fernando; Villagómez Molero, DiegoEl presente trabajo de investigación se centró en el uso de acero estructural en la construcción de una vivienda multifamiliar y una oficina en el extranjero. A partir de ello, se plantearon los factores sismorresistentes y de diseño que limitan la masificación del uso de acero estructural en la construcción de viviendas multifamiliares en el Perú. El objetivo principal de este trabajo consistió en determinar la viabilidad de construir edificios destinados a viviendas multifamiliares como un desafío de realizarlos, actualmente, en el Perú. Primero, se desarrolló la metodología a partir de la recopilación de información de investigaciones recientes, publicaciones académicas, libros y papers. Asimismo, se revisaron las normas E.020 Cargas, E.030 Diseño Sismorresistente, E.060 Concreto armado, E090 Estructuras Metálicas, AISC 341-16 y AISC 360-10. Luego, con la información recolectada, se eligieron edificaciones en acero estructural idealizadas en el extranjero y el Perú para comparar sus sistemas sismorresistentes. Cabe mencionar, que las consideraciones de sismorresistencia y diseño para los edificios del extranjero se contrastaron con las normas peruanas, a fin de ver si las consideraciones del extranjero son las mismas o varían y su posibilidad de construirlas. Finalmente, se compararon los indicadores económicos de las edificaciones escogidas en el Perú con la finalidad de analizar la factibilidad de construir viviendas multifamiliares en acero estructural en nuestro país. En conclusión, se obtuvo que si es posible la construcción en acero estructural en edificaciones de viviendas multifamiliares en el Perú si es que existiera una industria complementaria de acero adecuada.Ítem Texto completo enlazado Comparación estructural y económica de los principales sistemas de sostenimiento de excavaciones para edificaciones y estructuras enterradas en el Perú y el mundo(Pontificia Universidad Católica del Perú, 2022-04-01) Meza Castillo, Wendy Jhasmín; Manrique Huamancaja, Erick Franz; Ticse Quispe, Jerson Aron; Atahuamán Arroyo, Josué José; Julca Yunca, Yoner Efraín; Villagómez Molero, DiegoEl crecimiento de la demanda de viviendas ubicadas en zonas céntricas ha impulsado a que las construcciones tiendan a expandirse de forma vertical, buscando aprovechar lo más posible el terreno. De esta manera, se generó la necesidad de construir sótanos relativamente profundos. Para tal fin, es necesario conocer los diferentes sistemas de sostenimiento de terrenos que existen actualmente y cuáles son las que poseen más ventajas y/o desventajas. En el presente trabajo de investigación se presenta la comparación en cuanto al proceso de diseño, costos y plazos de construcción de cinco sistemas. Las técnicas de sostenimiento que se seleccionaron para el análisis son muro Berlinés, Top-Down, Muro Pantalla, Soil nailing, pantalla de Pilas y Pilotes. El sistema más económico resulto el muro Soil Nailing y el más caro el sistema Top – Down.Ítem Texto completo enlazado Consideraciones de diseño para el uso de elementos prefabricados de concreto armado para estructuras de edificios(Pontificia Universidad Católica del Perú, 2021-04-12) Montenegro Carrillo, Renzo Adolfo; López Chaupijulca, Gloria Lorena; García Arriola, Manuel Alejandro; Vílchez Moreno, Sergio Emanuel; Muñoz Blanco, Jairo César; Villagómez Molero, DiegoLos elementos prefabricados se han abierto camino en el mercado mundial debido a sus diversas ventajas; sin embargo, se deben tener consideraciones importantes al momento de diseñar con estos. El presente trabajo de investigación expone dichas consideraciones, así como las ventajas que presentan estos elementos. Las consideraciones para el diseño con elementos prefabricados deben ser tomadas en cuanta desde la concepción del elemento a usar. Se debe definir que elemento es el prefabricado a usar y que función tendrá en la estructura para luego analizar el tipo de conexión que tendrá con los demás elementos. Posteriormente se podrá analizar también el tipo de falla que posiblemente tendría y el comportamiento sísmico de los mismos. Asimismo, se exponen las ventajas durante el proceso constructivo, las consideraciones durante este y el beneficio que tiene el uso de estos elementos en un contexto tan difícil y diferente como el actual. El distanciamiento social y la necesidad de que el sector no se detenga económicamente, brinda como opción más viable el uso de nuevas metodologías como esta. Es importante mencionar que los códigos de diseño empleados en nuestra normativa aun no cobren este tipo de elementos por lo que se debe tener en consideración al momento de proponer el uso de estos al constructor. El mercado peruano aun es conservador por lo que se requiere exponer mejor las ventajas de esos elementos y educar a los constructores acerca del uso correcto de estos al momento de instalarlos.Ítem Texto completo enlazado Diseño de un edificio multifamiliar de concreto armado de 6 pisos(Pontificia Universidad Católica del Perú, 2022-05-20) Cardenas Palomino, Kelssy Tatiana; Villagómez Molero, DiegoSe desarrolla el diseño estructural de un edificio de 6 pisos sin sótanos de concreto armado. Este edificio se encuentra ubicado en el distrito de la Victoria, provincia y departamento de Lima. El terreno en el cual se ubica el edificio cuenta con una capacidad portante de 4.5kg/cm2.El sistema de techado es de losas aligeradas y losas macizas. El sistema estructural consiste en muros de corte, combinados con pórticos conformados por columnas y vigas de concreto armado. La cimentación está conformada por zapatas aisladas, zapatas combinadas y zapatas conectadas con vigas de cimentación. Se predimensiona, analiza y diseña los elementos estructurales siguiendo los lineamientos de las Normas del Reglamento Nacional de Edificaciones E.020, E030 y E.060, lo cual garantiza un adecuado desempeño bajo cargas de servicio y un desempeño de completamente operativo ante un sismo frecuente y no llegue al colapso ante un sismo severo. Además, se elaboran los planos de estructuras para la construcción.Ítem Texto completo enlazado Diseño de un reservorio circular de 2700 m3 apoyado sobre el suelo(Pontificia Universidad Católica del Perú, 2021-11-04) Rivera Benavides, Luis Eduardo; Villagómez Molero, DiegoEn el presente trabajo se realizó el pre dimensionamiento, análisis y diseño de un reservorio circular de 2 700 m3 apoyado sobre el terreno. El reservorio tiene 25 m de diámetro y una altura de 6.50 m. El terreno se considera del tipo S1 con un módulo de balasto de 2 kg/cm3. Para el análisis y diseño del reservorio se consideró principalmente las normas de Diseño Sismorresistente E.030, la Norma de Concreto Armado E.060 y el código ACI 350.6 de diseño sísmico de estructuras contenedoras de líquidos. El análisis sísmico se realizó considerando el método dinámico con ayuda de las ecuaciones propuestas por Housner (1963). Dentro del análisis se hace la distinción de los modos impulsivo y convectivo. En el diseño se considera factores de durabilidad que amplifican las combinaciones de fuerzas para evitar problemas de fisuración en la estructura que comprometan la hermeticidad de la misma. El diseño en concreto armado de la estructura se realizó considerando las ecuaciones propuestas por la Norma E.060 y los requerimientos propuestos en la norma ACI 350.3. Como resultado del diseño se obtiene el espesor de 45 cm para las paredes del reservorio, así como para el fondo del mismo. La cúpula se diseñó con un espesor de 7 cm en la parte central y una flecha de 2.80 m. Finalmente, una vez terminado el diseño del reservorio se realiza una verificación de los esfuerzos bajo flexión y tracción directa según los parámetros de la norma ACI 350.3. En el presente trabajo se concluye que la estructura diseñada es apropiada para el uso requerido y cuenta con dimensiones típicas de elementos estructurales de la misma naturaleza.Ítem Texto completo enlazado Diseño de un reservorio circular de 2700 m3 apoyado sobre el suelo ubicado en Arequipa(Pontificia Universidad Católica del Perú, 2023-10-10) Vereau Quispe, Bryan Rolando; Villagómez Molero, DiegoEl presente trabajo consiste en el diseño de un reservorio circular compuesto por una cúpula esférica, muros cilíndricos, un anillo en la unión entre estos y una losa de fondo. Por requerimientos hidráulicos, el reservorio contará con 25.00 m de diámetro con una altura de muro de 6.50 m y un tirante de 5.50 m de modo que pueda almacenar 2700 m3 de agua. Según el estudio de mecánica de suelos, se tiene un suelo de perfil tipo S1 con una capacidad portante de 2.5 kg/cm2 y un módulo de balasto de 2.0 kg/cm3. Se utilizó el programa SAP2000 para el modelamiento tridimensional del reservorio y el análisis por cargas de gravedad y de sismo. En el caso de estas últimas, se realizó dos métodos de análisis: uno estático y otro dinámico con el fin de comparar resultados en la etapa de diseño. Para el desarrollo de este trabajo se emplearán las siguientes normas: NTP E.020, NTP E.030, NTP E.060, ACI 350-06, ACI 350.03-06.Ítem Texto completo enlazado Diseño de un reservorio circular de almacenamiento de agua potable de 2700 m3 de capacidad en Lima(Pontificia Universidad Católica del Perú, 2023-03-01) Rengifo Aliaga, Carlos Miguel; Villagómez Molero, DiegoEl trabajo escogido es un reservorio de almacenamiento de 2700 m3 ubicado en el departamento de Lima. Se realizará el predimensionamiento de la cúpula, viga anillo, pared cilíndrica y losa de fondo. Posteriormente se modelará el reservorio en el programa computacional SAP 2000. Finalmente, se realizará el análisis sísmico mediante el método estático. Para finalizar se diseñarán los elementos estructurales del reservorio y se evaluarán si los esfuerzos admisibles son menores a los permisibles.Ítem Texto completo enlazado Diseño de un reservorio circular de almacenamiento de agua potable ubicado en la ciudad de Arequipa de 2700 m3 de capacidad(Pontificia Universidad Católica del Perú, 2024-01-08) Gutierrez Vera, Nichols Javier; Villagómez Molero, DiegoEl presente trabajo académico aborda el diseño estructural de un reservorio de concreto armado apoyado en el suelo destinado a contener agua. El objetivo principal es desarrollar un diseño óptimo que garantice la seguridad, durabilidad y funcionalidad de la estructura, considerando las características específicas del proyecto. El reservorio tiene una capacidad total de 2700 m3 de agua, el cual está diseñado con un diámetro de 25 metros y una altura de agua de 6.5 metros. Se lleva a cabo un análisis detallado de las cargas y solicitaciones a las que estará sometido el reservorio, considerando tanto las cargas permanentes, como el peso propio de la estructura y el agua almacenada, como las cargas dinámicas por sismo y el movimiento de la masa de agua. Se aplican los principios del diseño estructural de concreto armado, considerando las normas y códigos de diseño nacionales e internacionales para dimensionar los elementos estructurales como la cúpula, las paredes y la losa de fondo del reservorio. Asimismo, el trabajo incluye la utilización de SAP2000, software especializado en análisis y diseño estructural para realizar modelos computacionales que permitan evaluar el comportamiento de la estructura frente a diferentes escenarios de carga y realizar verificaciones de resistencia y deflexiones. En síntesis, el trabajo académico presenta un enfoque integral y detallado para el diseño estructural de un reservorio de concreto armado, considerando su capacidad, dimensiones y condiciones de carga específicas. Los resultados obtenidos proporcionan una base sólida para la construcción de una estructura segura y funcional, que cumple con los requisitos técnicos y normativos establecidos.Ítem Texto completo enlazado Diseño de un reservorio circular de almacenamiento de agua potable ubicado en la ciudad de Lima de 2500 m3 de capacidad(Pontificia Universidad Católica del Perú, 2021-10-06) Villegas Herrera, Romel Adolfo; Villagómez Molero, DiegoEl presente trabajo de diplomatura tiene como objetivo general presentar el predimensionamiento, análisis por cargas de gravedad y sísmicas, y el diseño estructural en concreto armado de un reservorio de agua potable apoyado sobre el suelo ubicado en la ciudad de Lima. El reservorio tiene forma circular y por requerimientos hidráulicos tiene un volumen de 2500 m3, diámetro de 22 m y una altura de 7.5 m. El estudio de mecánica de suelos consideró un suelo de perfil tipo S1 con una capacidad portante de 3.5 kg/cm2 y un módulo de balasto de 2.5 kg/cm3. Este está compuesto por una losa de fondo, paredes cilíndricas, una cúpula esférica en la parte superior y una viga tipo anillo que une la cúpula con las paredes. El análisis por cargas de gravedad y sismo del reservorio simplemente apoyado están modelados tridimensionalmente en el programa SAP 2000, siguiendo exigencias y estipulaciones de la Norma Técnica E.020, E.030 del año 2018 y el código ACI 350 06.3. Para el diseño de la cúpula, paredes, viga tipo anillo y losa de fondo se consideran la norma peruana E.060 y el código ACI 350-06.