Explorando por Autor "Huaringa Mosquera, Suzanne Maria"
Mostrando 1 - 1 de 1
- Resultados por página
- Opciones de ordenación
Ítem Texto completo enlazado Teoría de Galois de ecuaciones diferenciales lineales(Pontificia Universidad Católica del Perú, 2020-08-06) Huaringa Mosquera, Suzanne Maria; Fernández Sanchez, Percy BraulioEn teoría de Galois clásica, las raíces de un polinomio f(X) ∈ K [X], sus raíces generan una extensión E del cuerpo K, llamado el cuerpo de descomposición E de f(X). En el presente trabajo estudiaremos su análogo en teoría de Galois diferencial. Si dotamos a un anillo de una operacion llamada derivación (que verifica las propiedades básicas de la derivada usual) llamaremos a este par, anillo diferencial. Veremos que dado un cuerpo diferencial K y un operador diferencial lineal homogéneo L definido sobre el, sus soluciones generan una extension diferencial E del cuerpo diferencial K, dicha extensión es llamada de Picard-Vessiot. Mostraremos con detalle la construcción de una extensión de Picard-Vessiot [1] y veremos que en efecto siempre es posible realizarla. También veremos que es única salvo K−isomorfismo diferencial.