Explorando por Autor "Arribasplata Seguin, Adan Smith"
Mostrando 1 - 2 de 2
- Resultados por página
- Opciones de ordenación
Ítem Texto completo enlazado Diseño mecánico de un sistema de rotación biaxial de 400 Kg de capacidad para la fabricación de juguetes de plástico mediante moldeo rotacional(Pontificia Universidad Católica del Perú, 2014-08-12) Arribasplata Seguin, Adan Smith; Acosta Sullcahuamán, Julio Arnaldo; Tupia Anticona, Walter MarianoDesde hace 25 años la empresa familiar “Arribasplata Seguin” viene produciendo juguetes, cuyas partes principales son fabricadas artesanalmente mediante moldeo rotacional, en el que se emplean polímeros termoplásticos como materia prima. Dado que todo el proceso se hace a mano, no se pueden controlar los parámetros del proceso ni las características del producto; asimismo, el tamaño y la cantidad de los juguetes que se fabrican están limitados por la destreza, experiencia y condición física de la persona que realiza el trabajo. Para resolver estos problemas y mejorar la producción de juguetes, la empresa ha decido implementar un equipo de moldeo rotacional, capaz de hacer girar un arreglo de moldes huecos simultáneamente en dos ejes perpendiculares, al mismo tiempo que se calienta dentro de un horno para que el material contenido en los moldes pueda adherirse homogéneamente a la superficie interior de los mismos y, luego de ser enfriados, den como resultado productos huecos de espesor más uniforme, mejor calidad y en mayor cantidad. El objetivo del presente trabajo es diseñar un sistema mecánico de rotación biaxial, de 400 kg de capacidad de carga y 300°C de temperatura máxima de trabajo, para la fabricación de juguetes de polímeros termoplásticos mediante moldeo rotacional. El diseño del sistema mecánico de rotación biaxial se realizó según la metodología recomendada por la Asociación de Ingenieros Alemanes (Verein Deutscher Ingenieure, VDI 2221) cuyo título es “Métodos para el desarrollo y diseño de sistemas técnicos y productivos”. Con ayuda de la recomendación, el proceso de diseño se llevó a cabo de forma ordenada y según las cuatro etapas que sugiere el documento. Durante la primera etapa se identificaron las características generales de todo el equipo de moldeo rotacional, con el fin de conocer su influencia sobre el sistema de rotación. En la segunda etapa se plantearon cuatro conceptos de solución que fueron evaluados con ayuda de un análisis técnico-económico para identificar el concepto de solución óptimo. Finalmente, durante la tercera y cuarta, se desarrollaron todos los detalles del diseño concernientes al sistema de rotación. En conclusión, se ha diseñado un sistema mecánico de rotación biaxial para la fabricación de juguetes de polímeros termoplásticos mediante moldeo rotacional. El sistema mecánico es capaz de hacer girar un conjunto de moldes en dos direcciones perpendiculares con una velocidad máxima de 20 rpm, al mismo tiempo que se calientan dentro de una cámara que puede llegar hasta los 300 °C.Ítem Texto completo enlazado Estudio del sinterizado de materiales compuestos de polietileno reciclado y madera capirona recuperada fabricados mediante moldeo rotacional(Pontificia Universidad Católica del Perú, 2016-09-02) Arribasplata Seguin, Adan Smith; Acosta Sullcahuamán, Julio ArnaldoEn el 2012, el Ministerio del Ambiente presentó el cuarto informe sobre desechos solido municipales y no municipales. Según este documento, durante el 2010, en nuestro país se generaron 613 toneladas de residuos sólidos plásticos por día. La región de Lima produce un 51,4% de los residuos plásticos totales y, dado que, solo un 31,6% de sus distritos reportaron sobre la gestión de sus residuos, entonces, la cantidad de desechos plásticos generados podría resultar ser más alta al de la cifra citada. Entonces, dado que Lima es la región que genera la mayor cantidad de desechos plásticos a nivel nacional y es, al mismo tiempo, la región donde se concentra mucha de la actividad industrial, es posible pensar en un sector industrial local que trate de reusar estos desechos y los transforme en productos con valor agregado. Así, uno los procesos más usados a nivel industrial para la fabricación de productos huecos de gran volumen, libres de esfuerzos residuales y a bajo costo con respecto a otros procesos, es el proceso de moldeo rotacional. En este sentido, el objetivo principal de esta investigación es estudiar el sinterizado de materiales compuestos de polietileno reciclado y madera capirona recuperada fabricados mediante moldeo rotacional con el fin de incentivar el uso de materiales alternativos, conformados a partir materiales considerados como desechos, dentro del sector industrial. Para cumplir con el objetivo principal, se ha estudiado el estado del arte referente al proceso de moldeo rotacional y a los materiales compuestos constituidos de plástico y madera. Se han identificado los parámetros críticos del proceso de moldeo de estos materiales tales como la temperatura y el tiempo de calentamiento y el tamaño y la proporción en volumen de las partículas de madera, a partir de los cuales, fue posible idear una metodología experimental. En base a esta metodología, se llevaron a cabo ensayos de moldeo rotacional en cuatro etapas diferentes y, en cada una de ellas, se elaboraron varios materiales compuestos según diferentes condiciones de moldeo. Al final de cada etapa, estos materiales fueron sometidos a ensayos de tracción a fin de evaluar el efecto de los parámetros del proceso sobre las propiedades mecánicas del material determinados en base a dicho ensayo de control. En la primera etapa, se determinaron las temperaturas y tiempos de calentamiento. Durante la segunda, tercera y cuarta etapa, se evaluaron el efecto de la proporción en volumen de las partículas de madera, del tamaño de partícula de madera de la temperatura, respectivamente. Los constituyentes también han sido caracterizados. Se ha estudiado el sinterizado de materiales compuestos de polietileno reciclado y madera capirona recuperada fabricados mediante moldeo rotacional y se ha demostrado que el proceso de sinterización se realiza más eficazmente a mayor temperatura y mayor tiempo de calentamiento para una misma proporción de madera. El material de mejores propiedades mecánicas es aquel que está constituido por un 15 % en volumen de partículas de madera y ha sido moldeado a 300 °C durante 25 minutos. Asimismo, se probado que a medida el contenido de madera aumenta, se dificulta el proceso de sinterización y disminuyen las propiedades mecánicas del material compuesto; mientras que, a medida que disminuye el tamaño de partículas de madera, las propiedades mecánicas mejoran.