Bartl, KarinCarhuamaca Llatas, Vania LorenaAronés Ortega, Harold Aaron2024-01-232024-01-2320232024-01-23http://hdl.handle.net/20.500.12404/26901El Perú es un país que ha pasado por desastres naturales de gran magnitud, lo cual ha resultado en pérdidas significativas de vidas humanas e infraestructura. En respuesta a estas emergencias, se ha llevado a cabo el proceso de rehabilitación urbana de zonas damnificadas a través de programas de reconstrucción de viviendas. Sin embargo, la construcción de estas viviendas a gran escala conlleva impactos ambientales notables dado que el sector de la construcción es responsable de una importante cantidad de emisor de gases de efecto invernadero y consumidor de energía a nivel mundial. Por ello, la presente investigación se centra en el proyecto de reconstrucción de viviendas evalúa y cuantifica los impactos ambientales a lo largo del ciclo de vida mediante la metodología del Análisis de Ciclo de Vida (ACV). Las categorías de impacto ambiental analizados son: potencial de calentamiento global, toxicidad humana, formación de partículas finas, acidificación, eutrofización marina y escasez de recursos fósiles. Por otro lado, el enfoque del análisis es del proceso constructivo). Además, se ha desarrollado la normalización y ponderación de los impactos de cada alternativa propuesta con el fin de estandarizar los resultados y proponer un ecodiseño menos subjetivo. Los resultados revelan que los materiales que más significativos en términos de impacto ambiental son el concreto, el acero y los ladrillos de arcilla. Además, con respecto a los escenarios planteados, el uso de cemento puzolánico conlleva a una reducción de 14.3% al 18.6% en la mayoría de las categorías de impacto. En el caso del ladrillo sílico calcáreo, los impactos se redujeron en un rango del 8.7% 14.3%. Con respecto a las placas de yeso, su uso genera una reducción del 4% al 10.4%, sin embargo, genera un aumento de hasta un 42.5% en la toxicidad humana en módulos de albañilería. En general, no se obtiene la misma tendencia de reducción para cada categoría de impacto a analizar, principalmente a la diferencia que existe tanto en las sustancias y compuestos químicos emitidos como en el proceso de extracción de cada material. Finalmente, se estandarizaron los resultados a través de la normalización con los factores de referencia brindados por el reporte publicado por la Comisión Europea: Global normalisation factors for the Environmental Footprint and Life Cycle Assessment y la base de datos Normalization scores ReCiPe 2016 (National Institute for Public Health and the Environment, 2020) para luego ponderarlos según los valores establecidos por la Unión Europea (Salas, S. et al., 2018) y la establecida por Shu Su a través de la ponderación estática y dinámica (Shu Su, 2019), resultando que el diseño con el mejor desempeño ambiental de los módulos analizados corresponde al uso del cemento puzolánico junto con el ladillo sílico calcáreo, obteniendo reducciones en un rango del 15% al 18%. Sin embargo, es importante mencionar que futuras investigaciones deberían incluir también el análisis de otros diseños alternativos, así como establecerse diferentes fuentes para los factores de normalización y ponderación con el fin de alcanzar soluciones más sustentables.Peru is a country that has experienced natural disasters of great magnitude, resulting in significant losses of human lives and infrastructure. In response to these emergencies, the process of urban rehabilitation in affected areas has been carried out through housing reconstruction programs. However, the large-scale construction of these houses has notable environmental impacts because the construction sector is responsible for a significant amount of greenhouse gas emissions and global energy consumption. Therefore, this research focuses on the housing reconstruction project "Renacer," which evaluates and quantifies environmental impacts throughout the life cycle using the Life Cycle Assessment (LCA) methodology. The analyzed environmental impact categories include global warming potential, human toxicity, fine particulate matter formation, acidification, marine eutrophication, and fossil resource scarcity. Furthermore, the analysis follows a "cradle-to-gate" approach, considering the entire life cycle from raw material extraction to the completion of the construction process. Additionally, normalization and weighting of the impacts of each proposed alternative have been developed to standardize the results and propose a less subjective eco-design. The results obtained show that the materials that contribute the most to the impacts of each impact category are concrete, steel and clay bricks. In addition, with respect to the scenarios proposed, the use of pozzolanic cement leads to a reduction from 14.3% to 18.6% in most impact categories. In the case of the sand lime brick, the impacts were reduced in a range of 8.7% 14.3%. Regarding gypsum plasterboard, its use generates a reduction from 4% to 10.4%, however, it generates an increase of up to 42.5% in human toxicity in masonry modules. In general, the same redaction trend is not obtained for each impact category to be analyzed, mainly due to the difference that exists both in the substances and chemical compounds emitted and in the extraction process of each material. Finally, the results were standardized through normalization with the reference factors provided by the report published by the European Commission: Global normalization factors for the Environmental Footprint and Life Cycle Assessment and the Normalization scores ReCiPe 2016 database (National Institute for Public Health and the Environment, 2020) to then weight them according to the values established by the European Union (Salas, S. et al., 2018) and the one established by Shu Su through static and dynamic weighting (Shu Su, 2019). Based on the normalized and weighted results, the design with the best environmental performance corresponds to the use of pozzolanic cement together with sand lime brick, obtaining impact reductions in a range of 15% to 18%. However, it is important to mention that future research should also include the analysis of other alternative designs, as well as establishing different sources for the normalization and weighting factors to reach more sustainable solutions.spainfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/2.5/pe/Construcción de viviendas--Perú--Ica--PiscoViviendas--Diseño de estructuras--Perú--Ica--PiscoRehabilitación urbana--Perú--Ica--PiscoEvaluación de impactos ambientales y desarrollo de propuestas de mitigación de impactos para viviendas de emergencia en la región de Piscoinfo:eu-repo/semantics/bachelorThesishttps://purl.org/pe-repo/ocde/ford#2.01.01