Guzmán Córdova, Maribel GiovanaFlores Obispo, Michael Isaías2024-02-292024-02-2920232024-02-29http://hdl.handle.net/20.500.12404/27206En el Perú, la industria minera viene generando un gran impacto en el ámbito económico, social y ambiental a lo largo de los años. Donde, el ámbito ambiental, es el más perjudicado, siendo el componente agua uno de los principales componentes ambientales afectados, debido al mal manejo de los efluentes generados por las actividades mineras o por pasivos ambientales mineros. Por eso, los sistemas de tratamiento pasivo, como, los Wetlands artificiales, surgen como una alternativa para la remediación a largo plazo, además, de ser económicamente más viable que una planta de tratamiento, ya que emplea especies de plantas para la remoción de elementos tóxicos. Con el fin de cumplir con la normativa ambiental: Límites Máximos Permisibles (LMP) y Estándares de Calidad Ambiental (ECA). La presente investigación tiene como objetivo evaluar el uso de Wetlands aeróbicos, usando plantas como la Totora y Carrizo, para eliminar metales pesados de aguas contaminadas; y su posible utilización para la remediación de pasivos ambientales mineros. Para lograr tal objetivo, se construyeron celdas, a escala de laboratorio, que contenían las plantas previamente mencionadas, soluciones que contiene metales como Cu, Zn, Pb y Fe, y piedra chancada como sustrato. El ciclo de remediación fue de 9 días, donde se realizó el monitoreo de los parámetros físico-químicos (pH, conductividad eléctrica, oxígeno disuelto, turbidez), aniones (nitratos, amoniaco, sulfatos) y contenido de metales. Al finalizar el ciclo, se procedió a retirar las especies de plantas para su tratamiento y análisis mediante los métodos de Vía Seca y Vía Húmeda, para determinar la cantidad de metales presentes en cada parte de la planta (tallo y raíz) y determinar sus eficiencias de absorción. De los resultados obtenidos en laboratorio, se determina que en el día final de tratamiento la mayoría de los parámetros físico-químicos analizados, cumplen con los Límites Máximos Permisibles (LMP) y Estándares de Calidad Ambiental (ECA), a excepción del amoniaco. Además, las concentraciones finales de los metales pesados, cumplen con los LMP y ECA, a excepción del Pb que solo cumple con los LMP. Se obtiene, que el Carrizo obtuvo mejor eficiencia de remoción de Cu (87%) y Zn (94%), y la Totora mejor eficiencia de remoción de Cu (90%), Pb (92%) y Fe (69%). De la misma forma, el Carrizo presento mejor eficiencia de acumulación de Cu y Zn, y la Totora mejor eficiencia de acumulación de Cu y Pb. De los dos métodos empleados, la Vía Húmeda presenta mejores valores de recuperación de metales que la Vía Seca, en metales como el Cu y Fe. Finalmente, se presentó el presupuesto empleado a escala de laboratorio para el desarrollo de la propuesta de remediación para que pueda ser implementada a mayor escala, tanto en operaciones mineras como en pasivos ambientales mineros.In Peru, the mining industry has been generating a great impact in the economic, social and environmental spheres over the years. Where, the environmental sphere is the most affected, with water being one of the main environmental components affected, due to the poor management of effluents generated by mining activities or by mining environmental liabilities. For this reason, passive treatment systems, such as artificial wetlands, emerge as an alternative for long-term remediation, in addition to being economically more viable than a treatment plant, since it uses plant species for the removal of toxic elements. In order to comply with environmental regulations: Maximum Permissible Limits (MPL) and Environmental Quality Standards (EQS). The objective of this research is to evaluate the use of aerobic wetlands, using plants such as Totora and Carrizo to eliminate heavy metals from contaminated waters and their possible use for the remediation of mining environmental liabilities. To achieve this objective, cells were built, on a laboratory scale, containing the plants, the solutions which contains metals such as Cu, Zn, Pb and Fe, and crushed stone as a substrate. The remediation cycle was 9 days, where physical-chemical parameters (pH, electrical conductivity, dissolved oxygen, turbidity), anions (nitrates, ammonia, sulfates) and metal content were monitored. At the end of the cycle, the plant species were removed for treatment and analysis using the Dry Ashing and Wet Digestion Methods, to determine the amount of metals present in each part of the plant (stem and root) and their absorption efficiencies. From the results obtained in the laboratory, it is determined that on the final day of treatment, most of the physical-chemical parameters analyzed comply with the Maximum Permissible Limits (MPL) and Environmental Quality Standards (EQS), with the exception of ammonia. Furthermore, the final concentrations of heavy metals comply with the MPL and EQS, except for Pb, which only complies with the MPL. It is obtained that the Carrizo has better removal efficiency of Cu (87%) and Zn (94%), and the Totora better removal efficiency of Cu (90%), Pb (92%) and Fe (69%). In the same way, the Carrizo presented better Cu and Zn accumulation efficiency, and the Totora better Cu and Pb accumulation efficiency. Of the two methods used, the Wet Digestion Method presents better metal recovery values than the Dry Ashing Method, in metals such as Cu and Fe. Finally, the budget used at a laboratory scale for the development of the remediation proposal was presented so that it can be implemented on a larger scale, both in mining operations and in mining environmental liabilities.spainfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/pe/Agua--ContaminaciónIndustria minera--Aspectos ambientales--PerúIngeniería de minas--PerúEvaluación de la utilización de wetlands aeróbicos para la eliminación de metales pesados en aguas contaminadasinfo:eu-repo/semantics/bachelorThesishttps://purl.org/pe-repo/ocde/ford#2.07.03