Farfán Vargas, Jonathan SamuelMogollón Aparicio, Juan Arturo2018-02-202018-02-2020172018-02-20http://hdl.handle.net/20.500.12404/10177En el presente trabajo presentamos una construcción del movimiento browniano para lo cual probaremos en forma detallada los teoremas de extensión de Kolmogorov y el de Kolmogorov-Censot, luego hacemos una construcción detallada y autocontenida de la integral estocástica en la que los integradores son martingalas continuas cuadrado integrables. Esta es una posible extensión a la clásica integral de Itô en la cual el integrador es un movimiento browniano. En este contexto de integración estocástica enunciaremos y probaremos la fórmula de Itô y algunas de sus consecuencias. Finalmente trabajaremos con el tiempo local, la fórmula de Tanaka y estudiaremos una particular prueba.In this investigation we show a construction of the Brownian motion, which includes detailed proofs of the Kolmogorov's extension theorem and Kolmogorov-Censot theorem. In addition, we will show a detailed construction and self-contained of the stochastic integral in wich integrators are continuous square integrable martingales. This is one of the possible extensions to classical Itô's integral in which the integrator is a Brownian motion. In this context of stochastic integration we prove an Itô's formula version. Finally, we study a relationship between local time and Tanaka's formula.spainfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-nd/2.5/pe/Martingalas (Matemáticas)Análisis estocásticoProcesos estocásticosIntegración estocástica y tiempo localinfo:eu-repo/semantics/masterThesishttps://purl.org/pe-repo/ocde/ford#1.01.00