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Abstract

Derivatives have become widely accepted as tools for hedging and risk-management, as well as speculation 
to some extent. A more recent trend has been gaining ground, namely, arbitrage in derivatives.

The critical parameter in derivatives pricing is the volatility of the underlying asset. Exchanges often 
overestimate volatility in order to cover any sudden changes in market behavior, leading to systematic over-
pricing of derivatives. Accurate forecasting of volatility would expose systematic overpricing. Unfortunately, 
volatility is not an easy phenomenon to predict or forecast. One class of models that have proved successful 
in forecasting volatility in many situations is the Generalized Autoregressive Conditional Heteroscedasticity 
(GARCH) family of models.

The objective of the present study is to analyze systematic bias in the pricing of options derivatives. In 
order to perform the analysis, data were collected for a sample of stock options traded on the National Stock 
Exchange (NSE) of India and their underlying stocks. In the study, GARCH models are used to forecast un-
derlying stock volatility, and the forecasted volatility is used in the Black-Scholes model in order to determine 
whether the corresponding options were fairly priced. Any systematic bias in options pricing would provide 
evidence for arbitrage opportunities.
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The volatility of financial markets has been the object of numerous developments and applications over 
the past two decades, both theoretically and empirically. Financial economists are increasingly concerned 
with modeling volatility in asset returns. Volatility modeling is important because volatility is considered a 
measure of risk, and investors want a premium for investing in risky assets. Banks and other financial insti-
tutions apply value-at-risk models to assess the risks. Modeling and forecasting volatility, or the covariance 
structure of asset returns, is therefore important.

Unfortunately, volatility is not an easy phenomenon to predict or forecast. One class of models that have 
proved successful in forecasting volatility in many situations is the GARCH family of models, introduced by 
Engle (1982) and Bollerslev (1986). GARCH models are discrete time models that have been used to estimate 
a variety of financial time series such as stock returns, interest rates, and foreign exchange rates. The distinc-
tive feature of GARCH models is their recognition that volatilities and correlations are not constant. During 
some periods, a particular volatility or correlation may be relatively low, whereas during other periods, it may 
be relatively high. The models attempt to keep track of the variations in the volatility or correlations through 
time. GARCH models build on advances in the understanding and modeling of volatility. The models take into 
account excess kurtosis, or fat-tail behavior, and volatility clustering, two important characteristics of finan-
cial time series. The models provide accurate forecasts of variances and covariances of asset returns through 
the ability to model time-varying conditional variances. GARCH models have been applied in diverse fields 
such as risk management, portfolio management and asset allocation, option pricing, and foreign exchange. 

The GARCH (p, q) model is formulated as follows: 
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where p is the order of the GARCH (lagged volatility) terms, and q is the order of the ARCH (lagged squared-
error) terms. In particular, the GARCH (1, 1) model is given by:
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In the academic literature, the GARCH (1, 1) process is perceived as a realistic model for volatility. The 
forecast variance from the GARCH (1, 1) model can be interpreted as a weighted average of three different 
variance forecasts. The first is a constant variance that corresponds to the long-run average. The second is the 
forecast made in the previous period. The third is the new information not available when the previous forecast 
was made. This could be viewed as a variance forecast based on one period of information. The weights on the 
three forecasts determine how fast the variance changes with new information and reverts to its long-run mean.

Literature Review
The phenomenon of volatility clustering and its adverse implications on options pricing have been a 

source of concern in the options pricing literature. The Black-Scholes model (Black & Scholes, 1973; Merton, 
1973) assumes constant volatility of the underlying process and leads to bias in options pricing, including 
underpricing for out-of-the-money options (Black, 1975; Gultekin, Rogalski, & Tinic, 1982), low-volatility 
securities (Black & Scholes, 1972; Gultekin et al., 1982; Whaley, 1982), and short-maturity options (Black, 
1975; Whaley, 1982), as well as U-shaped implied volatility curves in relation to exercise price (Rubinstein, 
1985; Sheikh, 1991). A sizeable literature exists that addresses the use of GARCH models in options pricing 
in order to overcome the limitations. The following is a partial overview of the literature. 

Engle and Mustafa (1992) used the GARCH process to study options and their implied conditional volatili-
ties. They estimated the stock price volatility using a GARCH model, and they estimated the GARCH model 
implied by the option market using a generalized simulation minimization method from option price data. 
Duan (1995) introduced the GARCH option-pricing model, linking econometric models with the options 
pricing literature. Heston and Nandi (2000) proposed a closed-form solution for European options pricing in 
a GARCH model. In Heston and Nandi’s model, current volatility is easily estimable from historical asset 
prices observed at discrete intervals. The model also allowed for correlation between returns of the spot asset 
and variance and admitted multiple lags in the dynamics of the GARCH process. 
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Much of the subsequent GARCH option model literature carried the Duan (1995) and Heston and Nandi 
(2000) frameworks. Duan, Ritchken, and Sun (2007) extended the standard GARCH option-valuation model 
to include jumps. Christoffersen and Jacobs (2004) compared a range of GARCH models using option prices 
and returns under the risk-neutral as well as the physical probability measure. They found that, in contrast with 
returns-based objective functions, options-based objective functions favor models that incorporate volatility 
clustering and leverage effect. Stentoft (2005) proposed some new simulation techniques using simple least 
squares regressions, using the LSM method of Longstaff and Schwartz (2001), to price options that have the 
possibility of early exercise in a GARCH framework. Using an extensive Monte Carlo study, Stentoft (2005) 
explained some systematic pricing errors. Christoffersen, Heston, and Jacobs (2006) and Christoffersen, Jacobs, 
Ornthanalai, and Wang (2008) followed the Heston-Nandi procedure of inverting moment-generating functions.

More recently, Barone-Adesi, Engle, and Mancini (2008) proposed a method for pricing options based on 
GARCH models with filtered historical innovations. They used an incomplete market framework, allowing for 
different distributions of historical and pricing return dynamics, thus enhancing the model’s flexibility to fit 
market option prices. The model was used to analyze S&P 500 index options; it outperformed other compet-
ing GARCH pricing models and ad hoc Black-Scholes models. Barone-Adesi, Engle, and Mancini suggested 
that, in accordance with their model, implied volatility smiles could be explained by asymmetric volatility 
and negative skewness of filtered historical innovations.

Thus, an extensive literature exists about the application of GARCH models to options pricing. Most of 
the literature has addressed theoretical issues, such as model development, estimation, and simulation. In the 
present study, the literature is extended by examining systematic bias in options pricing in emerging markets 
like India, where the possibility of thin trading exists.

Data and Methodology
The sample consisted of 41 stocks listed on NSE of India that have options actively traded on the NSE. The 

sample stocks were chosen from 14 sectors: aviation (Air Deccan and Jet Airways), auto and auto components 
(Amtek Auto, Hero Honda, and Maruti), banking and financial services (Allahabad Bank, Canara Bank, Corpora-
tion Bank, and Reliance Capital), capital goods (ABB, Aditya Birla Nuvo, and AIA Engineering), cement (ACC, 
Ambuja, and Shree Cement), chemicals (Chambal Fertilizers and Orchid Chemicals), FMCG (Colgate, Dabur, and 
Hindustan Unilever), IT (3i Infotech, CMC, Infosys Technologies, and Wipro), media (Adlabs, Zee Ltd., and Sun 
TV), oil and gas (Aban Lloyd, GAIL, and HPCL), pharmaceuticals (Cipla and Dr. Reddy’s Ltd.), power (CESC, 
Reliance Energy, Suzlon, and Tata Power), textiles (Century Textiles, S Kumars, and Welspun Gujarat), and 
real estate (DLF and Unitech). The associated stock options traded on the NSE were all European-style options.

The data collected for the study consisted of the closing prices of the stocks in the period from January 
to December 2007 and the closing prices of the corresponding stock options in the period January to March 
2008. The data were collected directly from the NSE website.

The objective of the present study is to analyze systematic bias in the pricing of options derivatives. In 
order to perform the analysis, a GARCH (1, 1) model was used to forecast underlying stock volatility based 
on historical closing stock price data for the period January to December 2007, and this forecasted volatility 
is used in the Black-Scholes model in order to determine whether the corresponding options are fairly priced. 

The GARCH (1, 1) model is widely used in the financial econometrics literature to capture the character-
istics of volatility (Bollerslev, 1986). The GARCH (1, 1) model is expressed as follows:
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The Black-Scholes model is a model for pricing European call and put options, as follows: 
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For the analysis, the Black-Scholes model was used to price each stock option, with the initial price S0 
as the closing price of the stock on 31 December, 2007, and with the strike price X closest to this price, with 
an expiration period of three months (i.e., τ = 0.25). For each stock, the volatility forecast using the GARCH 
(1, 1) model was used as the Black-Scholes parameter σ. The risk-free rate was taken as 4.5% p.a. The Black-
Scholes model was used to compute implied volatilities, equating the call and put prices with the quoted call 
and put prices and solving for σ.

The analysis focused on two aspects: comparing projected volatility from the GARCH model with implied 
volatility from the Black-Scholes model, and comparing projected call and put prices as described above with 
quoted call and put prices. The differences were investigated against differences in capitalization and trading 
volume by categorizing the sample stocks in terms of capitalization as follows: low (less than Rs 25 billion), 
mid (between Rs 25 billion and Rs 100 billion), and high (greater than Rs 100 billion); and in terms of trad-
ing volume: low (less than 100 million traded units per year), moderate (between 100 million and 250 million 
units traded per year), and high (greater than 250 million units traded per year). 

Analysis and Interpretation
The parameter estimates of the GARCH (1, 1) model for all the sample stocks are shown in Table 1. The 

GARCH (1, 1) model was found to be significant for all the sample stocks. In addition, considerable evidence 
exists of persistence of volatility, ranging between 75% and 99%, and of long-run volatility, ranging between 
1.9% and 5.9%. 

The results of the volatility and pricing analysis of the sample stock options are shown in Table 2 and Table 
3, respectively. The implied volatility based on call prices is overestimated as compared to the projected volatil-
ity from the GARCH model for 73.2% of the sample stock options. Moreover, the implied volatility based on 
put prices is overestimated as compared to the projected volatility from the GARCH model for 87.8% of the 
sample stock options. In contrast, the call price is overvalued as compared to the projected call price based on 
the projected volatility from the GARCH model applied in the Black-Scholes model for 63.4% of the sample 
stock options. Finally, the put price is overvalued as compared to the projected put price based on the projected 
volatility from the GARCH model applied in the Black-Scholes model for 85.4% of the sample stock options.

The results of the paired-samples t-test for the implied volatilities (for both calls and puts) and the projected 
volatility (from the GARCH model) are shown in Table 4. The mean implied volatilities (for both calls and 
puts) are significantly lower than the mean projected volatility. In addition, the implied volatility based on call 
prices is significantly lower than the implied volatility based on put prices.
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The results of the paired-samples t-test for the quoted option prices and the projected option prices (based 
on the Black-Scholes model using GARCH volatilities) are shown in Table 5. The mean call price is signifi-
cantly higher than the mean projected call price, and the mean put price is significantly higher than the mean 
projected put price.

The results of the paired-samples t-test for the overpricing of call and put option prices (as compared to 
forecasts based on the Black-Scholes model using GARCH volatilities) are shown in Table 6. The mean over-
pricing of call options is significantly lower than the mean overpricing of put options. 

The results of the analysis of overestimation of volatility against market capitalization and trading volume 
are shown in Tables 7, 9, and 10. There is generally a higher overestimation of volatility with higher market 
capitalization, and a higher overestimation of volatility for moderate trading volume. The differences between 
low, mid, and high capitalization and between low, moderate, and high trading volume are not statistically 
significant because of the small sample sizes.

The results of the analysis of overvaluation of option prices against market capitalization and trading vol-
ume are shown in Tables 8, 11, and 12. There is generally a higher overvaluation of option prices with higher 
market capitalization and higher overvaluation of options prices with higher trading volume. In addition, 
overvaluation of put prices is much higher than the overvaluation of call prices, with higher capitalization 
and higher trading volumes. Again, the differences between low, mid, and high capitalization and between 
low, moderate, and high trading volume are not statistically significant because of the small sample sizes.

Discussion
Volatility permeates modern financial theories and decision-making processes. The GARCH family of 

models provides accurate measures and good forecasts of future volatility, which is critical for evaluation 
of option pricing. The results of the study indicate that the implied volatilities for both calls and puts are 
predominantly overestimated, as compared to the projected volatility, based on the GARCH model; and call 
and put option prices are predominantly overvalued as compared to the projected call and put options prices 
based on the Black-Scholes model with GARCH volatilities. Further, put options are overpriced in relation to 
call options, as compared to the forecasts based on the GARCH and Black-Scholes models. Overestimation of 
volatility and overvaluation of options prices increases with higher market capitalization and moderate/higher 
trading volume for the underlying stocks. The systematic bias could also be associated with thin trading, a 
characteristic of trading in options and more particularly stock options, in emerging markets like India. The 
possible connections require further investigation.

The observed discrepancies in the market make it necessary for investors to forecast volatility. Options are 
priced based on volatility, but a difference exists between the theoretical pricing of options and their actual 
pricing. To take advantage of such mispricing in the market, arbitrage can be implemented. If the projected 
call price were higher than the quoted call price, buying a call option would yield arbitrage, whereas if the 
projected call price were lower than the quoted call price, selling a call option would yield arbitrage. Likewise, 
for put options, if the projected put price were higher than the quoted put price, selling a put option would 
yield arbitrage, whereas if the projected put price were lower than the quoted put price, buying a put option 
would yield arbitrage.

Unfortunately, the results of the study are indicative rather than conclusive. The major limitations of the 
study are the relatively small sample size and the limited research period considered for the study. The research 
period has a particular drawback because of the global crisis towards the tail end of the period studied. In 
order to generalize the results of the study, similar analyses would need to be conducted for different periods 
and take into account the macroeconomic factors that might affect the pricing of options. 

Through the study, understanding of option prices and systematic mispricing by exchanges is provided. 
Further research could assess the arbitrage profits for each of the stock-option strategies. Further investigation 
might also consider the estimation of the prices for index and currency options using the GARCH model as 
applied in the present study.
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Table 1
GARCH Parameter Estimates Test for Significance

Stock α β α+β ω vL √vL LM test p-value

Air Deccan 0.1540 0.7435 0.8974 0.0002 0.0017 4.08% 8.3011 0.0040
Jet Airways 0.1117 0.6256 0.7373 0.0002 0.0007 2.68% 4.0694 0.0437
Amtek Auto 0.0772 0.8761 0.9532 0.0000 0.0005 2.20% 5.0080 0.0252
Hero Honda 0.0351 0.9080 0.9431 0.0000 0.0004 1.90% 4.1045 0.0428
Maruti 0.1066 0.7685 0.8750 0.0001 0.0006 2.39% 3.9393 0.0472
Allahabad Bank 0.0052 0.9848 0.9900 0.0000 0.0009 3.04% 4.5035 0.0338
Canara Bank 0.0041 0.8011 0.8052 0.0002 0.0008 2.88% 4.0284 0.0447
Corporation Bank 0.0320 0.8834 0.9154 0.0001 0.0009 2.94% 4.0198 0.0450
Reliance Cap 0.1544 0.8045 0.9589 0.0001 0.0016 4.02% 3.8739 0.0490
ABB 0.0823 0.8399 0.9222 0.0000 0.0004 2.09% 3.8175 0.0507
Abirlanuvo 0.0102 0.8704 0.8806 0.0001 0.0007 2.61% 4.2740 0.0387
Aia Eng 0.0568 0.8104 0.8671 0.0001 0.0007 2.70% 4.0111 0.0452
ACC 0.2996 0.4573 0.7569 0.0002 0.0008 2.74% 4.0138 0.0451
Ambuja 0.2064 0.7429 0.9493 0.0000 0.0007 2.56% 11.2423 0.0008
Shree Cement 0.0127 0.8436 0.8563 0.0001 0.0007 2.62% 3.8846 0.0487
Chambal Fert 0.2495 0.7405 0.9900 0.0001 0.0054 7.33% 6.7833 0.0092
Orchid Chem 0.0529 0.8402 0.8931 0.0001 0.0009 2.96% 4.5528 0.0329
Colgate 0.0215 0.7550 0.7765 0.0001 0.0004 2.09% 4.9061 0.0268
Dabur 0.0166 0.8939 0.9106 0.0000 0.0005 2.14% 5.4446 0.0196
HUL 0.1003 0.8085 0.9088 0.0000 0.0004 2.02% 4.6554 0.0310
3i Infotech 0.0898 0.8661 0.9559 0.0000 0.0008 2.77% 4.2376 0.0395
CMC 0.5013 0.2487 0.7500 0.0003 0.0013 3.58% 38.1188 0.0000
Infosys 0.1120 0.8154 0.9274 0.0000 0.0004 2.05% 4.3189 0.0377
Wipro 0.1120 0.8708 0.9828 0.0000 0.0008 2.87% 6.9097 0.0086
Adlabs 0.1031 0.8636 0.9667 0.0000 0.0015 3.83% 6.9745 0.0083
SUN TV 0.1005 0.8895 0.9900 0.0000 0.0035 5.93% 4.1666 0.0412
ZEE 0.0518 0.7674 0.8191 0.0001 0.0008 2.75% 4.7608 0.0291
Aban 0.0552 0.9113 0.9665 0.0000 0.0008 2.74% 4.2260 0.0398
GAIL 0.0650 0.9127 0.9777 0.0000 0.0010 3.10% 4.4750 0.0344
HPCL 0.8816 0.1084 0.9900 0.0000 0.0011 3.32% 7.5916 0.0059
CIPLA 0.2666 0.5272 0.7939 0.0001 0.0006 2.43% 3.8541 0.0496
DRL 0.1087 0.6883 0.7970 0.0000 0.0002 1.56% 4.4185 0.0356
Matrix Labs 0.0307 0.7193 0.7500 0.0002 0.0007 2.64% 4.2514 0.0392
CESC 0.1118 0.7885 0.9004 0.0001 0.0008 2.86% 9.9668 0.0016
Reliance Energy 0.1388 0.7961 0.9350 0.0001 0.0010 3.17% 19.5933 0.0000
Suzlon 0.0017 0.7483 0.7500 0.0003 0.0011 3.36% 4.5128 0.0336
S Kumars 0.0242 0.8002 0.8244 0.0001 0.0008 2.82% 4.8514 0.0276
DLF 0.0535 0.7805 0.8339 0.0001 0.0008 2.83% 4.3670 0.0366
Unitech 0.0234 0.7972 0.8206 0.0003 0.0015 3.87% 4.0851 0.0433
Century 0.1081 0.7849 0.8930 0.0001 0.0010 3.14% 3.8878 0.0486
Welspun Guj 0.0891 0.9009 0.9900 0.0000 0.0018 4.23% 4.6248 0.0315
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Table 2
Underestimation/Overestimation of Volatility of the Sample Stocks

Stock
Implied Volatility 

(C)
Implied Volatility 

(P) Projected Volatility % diff calls % diff puts
Air Deccan 0.3283 0.4150 0.3851 -14.74 7.77
Jet Airways 0.3722 0.3594 0.3204 16.18 12.17
Amtek Auto 0.3029 0.4520 0.4210 -28.03 7.38
Hero Honda 0.3738 0.3306 0.1721 117.23 92.09
Maruti 0.2901 0.4695 0.2345 23.72 100.18
Allahabad Bank 0.4537 0.5863 0.3472 30.67 68.86
Canara Bank 0.5184 0.5834 0.4066 27.50 43.50
Corporation Bank 0.6797 0.7192 0.4883 39.19 47.27
Reliance Cap 0.5361 0.7554 0.3499 53.23 115.89
ABB 0.6711 0.4371 0.3597 86.58 21.52
Abirlanuvo 0.4577 0.6294 0.4361 4.97 44.3
Aia Eng 0.3980 0.5514 0.3756 5.97 46.81
ACC 0.5344 0.5091 0.2248 137.67 126.43
Ambuja 0.3410 0.3381 0.3150 8.23 7.31
Shree Cement 0.5511 0.5509 0.2246 145.33 145.25
Chambal Fert 0.3335 0.4486 0.3824 -12.79 17.33
Orchid Chem 0.5645 0.6488 0.2637 114.12 146.09
Colgate 0.3716 0.5361 0.1488 149.73 260.26
Dabur 0.3664 0.2909 3.0014 -87.79 -90.31
HUL 0.3400 0.4403 0.1149 196.03 283.31
3i Infotech 0.4092 0.3774 0.5909 -30.75 -36.14
CMC 0.3716 0.5361 0.4607 -19.34 16.36
Infosys 0.3810 0.3467 0.3823 -0.34 -9.30
Wipro 0.3353 0.3801 0.2940 14.03 29.29
Adlabs 0.4696 0.6194 0.3658 28.38 69.35
SUN TV 0.6477 0.7026 0.6745 -3.98 4.17
ZEE 0.4265 0.6280 0.3058 39.45 105.33
Aban 0.5571 0.5602 0.3843 44.97 45.78
GAIL 0.5861 0.5008 0.3522 66.41 42.19
HPCL 0.3335 0.3641 0.2012 65.80 80.98
CIPLA 0.3903 0.4311 0.3923 -0.51 9.91
DRL 0.3738 0.3306 0.1517 146.51 117.98
Matrix Labs 0.2767 0.4889 0.3892 -28.92 25.60
CESC 0.4514 0.6153 0.4323 4.41 42.32
Reliance Energy 0.5441 0.6180 0.1725 215.48 258.37
Suzlon 0.7025 0.7509 0.3545 98.16 111.81
S Kumars 0.5331 0.5811 0.7672 -30.51 -24.25
DLF 0.3597 0.4461 0.1027 250.19 334.27
Unitech 0.7584 0.6465 0.7718 -1.73 -16.24
Century 0.5915 0.6540 0.4534 30.46 44.26
Welspun Guj 0.6072 0.6102 0.4228 43.64 44.33
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Table 3
Undervaluation/Overvaluation of the Price of the Sample Options

Stock
Quoted call 

price
Projected call 

price % diff calls
Quoted put 

price
Projected put 

price % diff puts
Air Deccan 10.5500 12.1027 -12.83 10.1000 9.2805 8.83
Jet Airways 52.3000 63.8106 -18.04 62.3000 39.6696 57.05
Amtek Auto 10.5000 13.9597 -24.78 11.9500 11.0395 8.25
Hero Honda 58.6500 65.2187 -10.07 35.4000 44.3458 -20.17
Maruti 62.8000 53.5622 17.25 68.1500 28.8330 136.36
Allahabad Bank 9.3500 7.4778 25.04 9.2500 5.0457 83.33
Canara Bank 25.0500 21.6982 15.45 26.1500 17.6468 48.19
Corporation Bank 49.7000 37.3626 33.02 41.9000 27.0282 55.02
Reliance Cap 138.4500 94.7738 46.08 166.6500 71.8123 132.06
ABB 158.9000 93.2039 70.49 78.9500 62.6185 26.08
Abirlanuvo 132.2500 124.4401 6.28 170.3500 116.3203 46.45
Aia Eng 120.2000 136.5927 -12.00 150.8000 124.9288 20.71
ACC 117.4500 52.1989 125.00 103.3000 43.3635 138.22
Ambuja 9.6000 1.5141 534.05 8.4000 3.9090 114.89
Shree Cement 145.8500 67.4554 116.22 121.6500 43.2997 180.95
Chambal Fert 20.8000 23.2817 -10.66 19.8000 16.4333 20.49
Orchid Chem 24.2000 12.1541 99.11 24.6500 9.2448 166.64
Colgate 31.1500 14.1940 119.46 38.5000 9.0215 326.76
Dabur 8.8500 55.9261 -84.18 4.4000 52.9459 -91.69
HUL 15.0500 5.5536 171.00 17.5000 3.9953 338.01
3i Infotech 12.1000 17.3915 -30.43 10.9500 17.1713 -36.23
CMC 31.1500 37.9377 -17.90 38.5000 32.7652 17.50
Infosys 155.8000 156.2677 -0.30 111.9500 124.8872 -10.36
Wipro 38.1000 34.2405 11.27 30.4500 22.3859 36.02
Adlabs 49.7000 40.1636 23.74 51.7500 28.4570 81.85
SUN TV 47.8500 49.5762 -3.48 40.7000 38.8917 4.65
ZEE 29.1000 21.7890 33.55 35.4000 15.9006 122.63
Aban 361.4500 263.5073 37.17 282.2000 182.4835 54.64
GAIL 38.8500 24.6854 57.38 27.6500 18.6470 48.28
HPCL 17.9000 11.8435 51.14 14.6500 7.1901 103.75
CIPLA 15.4000 15.4648 -0.42 11.7500 10.4976 11.93
DRL 30.5500 26.5671 14.99 19.7500 13.2443 49.12
Matrix Labs 15.5000 20.7781 -25.40 20.9000 16.2258 28.80
CESC 44.8500 43.0987 4.06 53.6500 36.8921 45.42
Reliance Energy 91.1500 34.6269 163.23 87.5500 19.7818 342.58
Suzlon 190.1500 104.5588 81.86 171.2000 73.7591 132.11
S Kumars 12.1500 17.1435 -29.13 11.9000 15.8654 -24.99
DLF 47.6500 17.7570 168.34 47.8500 7.8262 511.41
Unitech 36.8000 237.6931 -84.52 29.1500 235.2408 -87.61
Century 97.9500 76.9307 27.32 93.3000 62.7856 48.60
Welspun Guj 31.2000 21.8863 42.56 30.5500 21.0879 44.87
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Table 4
Paired-Samples t-Tests for Volatility

  mean std. dev. correlation p-value t-test p-value
Implied Volatility (call) 0.457 0.129 0.670 0.000 -10.578 0.000
Implied Volatility (put) 0.517 0.121        
Implied Volatility (call) 0.457 0.129 0.363 0.000   -2.549 0.011
Projected Volatility 0.821 2.592        
Implied Volatility (put) 0.517 0.121 0.150 0.007   -2.101 0.036
Projected Volatility 0.821 2.592        

Table 5
Paired-Samples t-Tests for Prices

  mean std. dev. correlation p-value t-test p-value
Quoted call price 65.456 69.628 0.788 0.000 2.975 0.003
Projected call price 58.193 62.168        
Quoted put price 55.748 58.824 0.665 0.000 5.247 0.000
Projected put price 42.309 51.617        

Table 6
Paired-Samples t-Tests for Prices of Call and Put Options

  mean std. dev. correlation p-value t-test p-value
Overpricing of calls 7.262 43.527 0.939 0.000 -7.004 0.000
Overpricing of puts 13.438 45.670

Table 7
Overestimation of Volatility against Capitalization and Volume

 
Capitalization Volume  

Low Mid High Low Moderate High Overall

% age diff vol. (C )
mean 19.0 49.3   71.4 38.2 64.8   38.7 47.4
std. dev. 58.1 67.8   89.0 62.2 70.5   89.9 73.9

% age diff vol. (P)
mean 35.6 76.8   87.9 58.0 81.1   65.7 68.3
std. dev. 57.3 86.3 109.4 69.2 74.0 120.2 88.1

Table 8
Overpricing of Call and Put Options against Capitalization and Volume

 
Capitalization Volume  

Low Mid High Low Moderate High Overall

% age diff price (C )
mean 12.2   37.9   75.3 19.6 44.7   63.9   42.2
std. dev. 49.9   55.8 157.2 49.6 55.9 160.8   99.5

% age diff price (P)
mean 46.1   92.1 248.4 60.9 93.2 238.3 128.2
std. dev. 66.8 109.9 564.6 89.4 93.4 569.3 329.6
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Table 9
Overestimation/Underestimation of Volatility against Capitalization

Capitalization
 

% diff vol. (C ) % age diff vol. (P) 
Underestimated Overestimated Underestimated Overestimated

Low
mean -22.7 60.7 -30.2 48.8
std. dev. 8.1 56.4 8.4 53.3

Mid
mean -45.9 62.9 -90.3 88.0
std. dev. 59.3 58.7   – 76.5

High
mean -10.4 96.0 -12.8 106.2
std. dev. 16.1 87.1 4.9 109.4

Overall
mean -23.6 73.5 -35.3 82.7
std. dev. 24.2 68.6 32.4 83.7

Table 10
Overestimation/Underestimation of Volatility against Volume

Volume
 

% diff vol. (C ) % age diff vol. (P) 
Underestimated Overestimated Underestimated Overestimated

Low
mean -20.1 61.5    – 58.0
std. dev. 11.6 58.6    – 69.2

Moderate
mean -30.6 80.7 -30.2 99.6
std. dev. 0.2 62.8 8.4 61.9

High
mean -23.5 77.6 -38.6 97.0
std. dev. 36.5 92.7 44.9 118.8

Overall
mean -23.6 73.5 -35.3 82.7
std. dev. 24.2 68.6 32.4 83.7

Table 11
Overpricing/Underpricing of Call and Put Options against Capitalization

Capitalization
 

% age diff price (C ) % age diff price (P) 
Undervalued Overvalued Undervalued Overvalued

Low
mean -20.5 57.9 -30.6 61.5
std. dev. 7.7 47.6 8.0 62.3

Mid
mean -33.2 54.3 -91.7 104.3
std. dev. 44.3 44.8    – 101.9

High
mean -24.1 137.4 -39.4 334.7
std. dev. 35.3 173.7 42.1 623.5

Overall
mean -24.3 80.6 -45.2 157.9
std. dev. 26.2 106.2 35.5 348.4

Table 12
Overpricing/Underpricing of Call and Put Options against Volume

Volume
 

% diff price (C ) % diff price (P) 
Undervalued Overvalued Undervalued Overvalued

Low mean -16.0 55.2 -20.2 67.1
std. dev. 8.0 48.2    – 89.8

Moderate mean -29.8 57.1 -30.6 113.9
std. dev. 0.9 50.1 8.0 83.9

High mean -32.2 146.1 -63.2 328.8
std. dev. 40.8 182.2 45.8 626.3

Overall mean -24.3 80.6 -45.2 157.9
std. dev. 26.2 106.2 35.5 348.4
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