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Abstract

Because of data envelopment analysis (DEA) flexibility in the choice of weights, assessment of decision-
making units (DMUs) often involves weighting only a few inputs and outputs and ignoring the remaining
variables by assigning them a zero weight. Widespread literature indicates the need to avoid zero weights,
and some authors claim that the fact that a given DMU attaches very different weights to the variables
involved in the assessments may be a concern (see, for example, Cooper, Seiford, & Tone, 2007). The aim of
this paper was to prevent unrealistic weighting schemes in cross-efficiency evaluations through an extension
of the multiplier bound approach (Ramon, Ruiz, & Sirvent, 2010a) based on “model” DMUs. The approach in
that paper guarantees nonzero weights while at the same time it tries to avoid large differences in the values
of multipliers. An application to the ranking of basketball players involved specifying a limit for allowable
differences in the relative importance that players attach to different aspects of the game by reflecting those
observed in the weight profiles of some model players, which are selected according to expert opinion. The
approach provided results that are consistent with basketball expert opinion and illustrated why the classical
approaches to cross-efficiency evaluation, which include the benevolent and aggressive formulations, may
lead to unreasonable results.
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Cross-efficiency evaluation, as introduced in Sexton, Silkman, and Hogan (1986) and Doyle and Green
(1994a), is an extension of the original data envelopment analysis (DEA) methodology (Charnes, Cooper, &
Rhodes, 1978) aimed at providing a ranking of the decision-making units (DMUs). DEA weights are unit-
specific, so they provide a self-evaluation of the DMUs that does not allow for derivation of an ordering. The
basic idea of cross-efficiency evaluation is to assess each unit with the weights of all the DMUs instead of
with its own weights alone. Calculating the cross-efficiency score of a given unit usually involves taking the
average of its cross-efficiencies, obtained using the profiles of weights provided by all the DMUs. Thus, evalu-
ation of each unit occurs within the range of weights of all the DMUs to provide a peer evaluation (instead of
a self-evaluation), allowing for ranking of the DM Us.

To address the problems associated with alternate optima for the weights in the CCR model, some authors
have proposed the use of alternative secondary goals to the choice of the profiles of weights for cross-efficiency
evaluations. Such models would include the well-known benevolent and aggressive formulations (Doyle & Green,
1994a; Sexton et al., 1986), which seek to globally maximize or minimize, respectively, the cross-efficiencies
of all the DMUs, while maintaining the self-evaluation of the unit under assessment (see Liang, Wu, Cook,
& Zhu, 2008a, for extensions of these models). Wang and Chin (2010) put forward a different approach, a
neutral DEA model through which each DMU determines the weights only from its own point of view without
considering its effects on other DM Us. Each DMU chooses weights to maximize the relative contribution of
the outputs in its assessment, which can effectively reduce the number of zero weights for outputs.

The approach proposed in the current paper, like that in Ramon, Ruiz, and Sirvent (2010b), is in accordance
with Wang and Chin’s (2010) model in the sense that each DMU makes its own choice of weights without
considering the effects on other DMUs. In this paper, each DMU chooses its profile of weights attempting
to avoid large differences in the weights attached to both inputs and outputs, which also guarantees nonzero
weights. In Ramon, Ruiz, and Sirvent (2011), the differences in the weights that the different DM Us attach to
the same variable are reduced. See also Liang, Wu, Cook, and Zhu (2008b) and Wu, Liang, and Chen (2009)
for examples of approaches from the perspective of the game theory.

Some researchers claim that cross-efficiency evaluation eliminates unrealistic weighting schemes without
the need to elicit weight restrictions. The idea is that the amalgamation of weights in the cross-efficiency
evaluation cancels out unrealistic weighting schemes (Anderson, Hollingsworth, & Inman, 2002; Doyle &
Green, 1994a; Sexton et al., 1986). The idea is sound, but avoiding unreasonable weights instead of expecting
elimination of their effects in the summary of the cross-efficiency evaluation may lead to more comprehensive
cross-efficiency scores. Thus, the focus of the cross-efficiency evaluation approach proposed in this paper is
on the weight profile choice of each DMU, in an attempt to prevent unrealistic weighting schemes. Specifi-
cally, the model involves extending the multiplier bound approach to the assessment of efficiency without
slacks (Ramon et al., 2010a) for use in cross-efficiency evaluations, which ensures nonzero weights and aims
to avoid large differences in weights.

Widespread literature indicates the need to avoid zero weights in DEA assessments, and a number of authors
emphasize the importance of exercising some control over the variation in factor weights resulting from DEA
flexibility (Roll & Golany, 1993). Cooper, Seiford, and Tone (2007) stated that large differences in the weights
that a given DMU attaches to the different inputs and outputs may be a concern (in extreme cases, when zero
weights exist, the corresponding variables are ignored in the analysis). Cook and Seiford (2008) noted, “The
AR [assurance region] concept was developed to prohibit large differences in the values of multipliers” (p. 8).
The approach in Ramon et al. (2010a) relates to the assessment of the DMUs having nonzero slacks in their
optimal solutions in the CCR model (i.e., those in FUNF '), evaluated after specifying a limit for the allowable
differences in weights determined by using the optimal solutions of the extreme efficient units (the DMUs in
E) with the least dissimilar weights. The approach also guarantees nonzero weights.

A variant of this approach is evident in the current paper, because the limit for the allowable differences in
weights is specified in an identical manner, but taking consideration of the differences observed in the weight
profiles of some model DM Us instead of those in the extreme efficient DM Us. The notion of model DMUs is
apparent in the literature: Charnes, Cooper, Huang, and Sun (1990) and Brockett, Charnes, Cooper, Huang,
and Sun (1997) used the optimal weights of some model (good) DMUEs, selected based on expert opinion, in
cone-ratio models to define some admissible directions. In the current paper, expert opinion aids in identifying
the model DM Us, and their weights are considered in setting the limit for allowable differences in the weights
used in the assessment of the DM Us.
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Ramon et al. (2010a) assessed the DM Us in FUNF with weights that are different from those provided by
the CCR model for these DM Us, which is of particular interest in the attempt to prevent unreasonable weights
in cross-efficiency evaluations evident in this paper. Detailed analysis of the choice of weights that inefficient
DMUs make is necessary to address the gap in cross-efficiency evaluation literature. In practice, many of the
inefficient DM Us have zeros in their optimal solutions for the weights in the CCR model, and these solutions
are generally unique. Due to this uniqueness, these optimal solutions will be obviously the profiles of weights
that the inefficient DMUs provide for the calculation of cross-efficiencies when using an approach based on
a choice of weights among alternate optima, regardless of the criterion of selection. The use of the profiles
of weights provided by the multiplier bound approach (Ramoén et al., 2010a) helps to overcome this difficulty
because the procedure does not involve selecting between the optimal solutions of the DMUs in F U NF. Fur-
ther discussion is evident in the context of the application in this paper, through which the undesired effects
of using the profiles of weights provided by the CCR model for the DMUs in F\U NF in the cross-efficiency
evaluation are presented.

The current paper includes an application of the proposed approach to the ranking of basketball players.
Cooper, Ruiz, and Sirvent (2009) reported the results of an application of DEA to the assessment of the ef-
fectiveness of basketball players in the context of the Spanish ACB League (the premier league in Spain). The
focus was on the multipliers, with the purpose of providing component profiles to allow for identification of
strengths and weaknesses of individual players. Using DEA, Cooper et al. tried to avoid the difficulties evident
in the ACB index of player assessment (same assessment used in other competitions, such as the Euroleague),
which attaches the same value to all the statistical indicators (e.g., points, rebounds, assists, fouls, etc.). The
idea was to take advantage of DEA flexibility in the choice of weights, and based on some information from
the technical staff of an ACB team Cooper et al. could fortunately access, incorporating the opinion of experts
on the relative importance of the different aspects of the game in the form of some assurance region (AR)
constraints (Thompson, Singleton, Thrall, & Smith, 1986). Eventually, Cooper et al. (2009) used the two-step
procedure in Cooper, Ruiz, and Sirvent (2007) to make a specific choice of weights between the alternate op-
tima. However, the analysis in Cooper et al. (2009) did not address the ranking of players, which is an aspect
of great interest in assessments in such a context.

The purpose of this paper was to make a cross-efficiency evaluation of basketball players of the ACB League
to rank the players. ACB League information allowed for identification of some model players through the
most valuable player (MVP) award. These players were necessary to set the limit for the allowable differences
in the importance attached to the different aspects of the game in the assessment of players. The proposed
approach yielded results that are consistent with basketball expert opinion.

Cross-efficiency evaluation has already been used in applications to sports. Wu, Liang, and Yang (2009)
measured the performance of nations in the Summer Olympic Games, and Wu, Liang, and Chen (2009) ap-
plied a DEA game cross-efficiency approach to Olympic rankings. For other applications of cross-efficiency
evaluation, see Sexton et al. (1986) on nursing homes; Oral, Kattani, and Lang (1991) on R&D projects; Doyle
and Green (1994b) on higher education; Green, Doyle, and Cook (1996) on preference voting; T. Y. Chen
(2002) on the electricity distribution sector; and Lu and Lo (2007) on economic environmental performance.

DEA has been useful in evaluating basketball players (Cooper et al., 2009), baseball players (Anderson, 2004;
Anderson & Sharp, 1997; Chen & Johnson, 2010; Sexton & Lewis, 2003; Sueyoshi, Ohnishi, & Kinase, 1999),
golfers (Fried, Lambrinos, & Tyner, 2004; Fried & Tauer, 2011), and football players (Alp, 2006). In football,
researchers have applied the methodology from the point of view of soccer teams (Boscd, Liern, Martinez, &
Sala, 2009; Espitia-Escuer & Garcia-Cebrian, 2004; Gonzalez-Gomez & Picazo-Tadeo, 2010; Haas, 2003),
coaches (Dawson, Dobson, & Gerrard, 2000), and clubs (Barros, Assaf, & Sa-Earp, 2010; Barros & Leach, 2006).
Researchers have further measured relative efficiency in sports at country level with DEA models, in particular
assessing the performance of participating nations in the Summer Olympics (Lozano, Villa, Guerrero, & Cor-
tés, 2002; Wu, Zhou, & Liang, 2010; Zhang, Li, Meng, & Liu, 2009). Finally, applications of DEA to analyze
efficiency in sports from other perspectives are apparent. Fizel and D’Itri (1999) studied the impact of practices,
such as firing and hiring managers, on organizational performance, Volz (2009) provided efficiency scores of not
only team performance but also player salaries in Major League Baseball, and Einolf (2004) measured franchise
payroll efficiency in the National Football League and Major League Baseball.

The following section addresses the developments corresponding to the cross-efficiency evaluation for the
case of using model DMUs as an extension of the approach in Ramon et al. (2010a). Next, the results of the ap-
plication are reported. The final section indicates the conclusions of the research.
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Theoretical Aspects: The Cross-Efficiency Evaluation Approach

The research involved using a variant of the basic approach in Ramon et al. (2010a) based on the use of model
DMUs to choose the weight profiles for cross-efficiency evaluation (this is actually mentioned as a possible ex-
tension in that paper). A discussion of the developments corresponding to the variant approach, including both
the models used and their properties, follows. The basic approach consists of a two-step procedure: (a) specify
the weight bounds to determine a limit for the allowable differences in weights by selecting weights from the
alternate optima of the extreme efficient units, trying to avoid large differences between multipliers, and (b)
incorporate the bounds into the DEA formulations used to assess the efficiency of inefficient units. Following
these ideas, the models that provide the weight profiles that the DM Us use in calculating the cross-efficiencies in
the present paper are therefore different depending on whether or not the corresponding DMU is a model DMU.

Model DMUs

Throughout this section, the assumption is that n DMUs use m inputs to produce s outputs, which must
be strictly positive. M is the set of model DMUs, and DMU  is a given unit in M. Model DMUs are assumed
to be Pareto-efficient units, which usually have alternative optimal solutions for their weights in the CCR
model. In such a situation, model DM U, must choose, among all of its alternate optima in the CCR model, the
optimal solution of the following model as the profile of weights for use in the cross-efficiency calculation:

Max ¢, (1)

s.t.
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Model 1 corresponds to the first step of the procedure in Ramon et al. (2010a). The idea of Model 1 is the
following: Constraints 1.1 to 1.3 allow for all the optimal multipliers in the CCR model for DMU,. In 1.4 to
1.5, the constraints force all the input virtuals and all the output virtuals to vary in between the bounds z and
h, and the bounds z, and h, respectively. As a result, the ratios between each couple of input (output) virtu-
als are all greater than or equal to z/h, (z,/h,). Model 1 involves maximizing ¢,, and both z /h and z /h are
greater than or equal to ¢, (as a result of 1.6 and 1.7). Thus, the aim is to maximize the minimum of the two
ratios and, in this sense, look for the weight profiles with the least dissimilar virtual inputs and outputs to
allow DMU; to be rated as efficient.
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Proposition 1. Model 1 has a global optimum.

Proof. The purpose of the proof is to show that the search for the global optimum of Model 1 can be confined
to a compact subset of the feasible region of Model 1, which ensures the existence of such a global optimum
because we would be maximizing a continuous function in a compact set. Because the feasible region of Model
1 is a closed set and all its variables except h, and h  are bounded, finding this compact set involves simply
bounding these two variables appropriately.

Let (\7;‘ VAN TRy ) be an optimal solution of the dual formulation of the CCR model satisfying V¢ >0, i
=1,....m,and {i’ >0, r=1,...,s (such an optimal solution exists because DMU . is Pareto-efficient). Next, define

~ 7, Z
~ . . ~d ~ . ~d ~ . . ~d o ~d ~ — . ‘1 Zfo .
Z; = min {vi xid}, h, = max {Vi Xid}’ Zy = rr}}lns{uryrd}, h, = Ellaxs{uryrd},and Py - mln{~ = }, which are
=l i=l,...m =hieess =l I o

all strictly positive scalars (because the assumption is that actual inputs and outputs are strictly positive). It
is easy to check that (\7?,...,\711,ﬂf,...,ﬂg,il,ﬁl,io,ﬁo,(bd) is a feasible solution of Model 1 with an associated
value in the objective equals @, . In addition, if (v]d,...,an,uf,...,uﬁ,z,,hl,zo,ho,(pd) is a feasible solution of

|
Model 1 with either h, > ; or h, > ;,then ¢4 <, (if, for example, h, > ;, then @4 S% Sh—< ®y). Thus,
d d d 1 I

solving Model 1 involves restricting the search for its optimal solution to those feasible solutions satisfying the

two additional restrictions, h, < ; and h, < NL This subset of the feasible region of Model 1 is therefore a
Py N

compact set, which ensures the existence of a global maximum.

To find the global optimum, one could use an approach based on a parametric linear programming (LP)
problem where @, serves as the parameter. Because ¢, belongs to (0,1], one must solve Model 1 for a set of
values for ¢, within that range. The idea is to search for the maximum value of the parameter for which a
feasible solution of Model 1 exists. A simple search procedure is to start at the upper end of the range, ¢, =
1, and decrease the parameter, with a decrement of, say, 0.0001, until a feasible solution emerges. Obviously,
if solutions that are more accurate are required, one could choose a smaller decrement. Note, however, that
in the case of having either one input or one output, one could convert Model 1 into a linear problem. For
example, having only one output (as in the application presented later) would require maximization of z_/h
subject to 1.1 to 1.3 and 1.5 and, following Charnes and Cooper (1962), one could then determine the optimal
solution by means of a linear problem.

Model 1 is formulated in terms of virtuals instead of absolute weights (this is also proposed as another
possible extension of the basic approach in Ramon et al. (2010a)). The idea of the models used in the cross-
evaluation approach proposed in this paper is to avoid large differences in the relative importance attached to
the involved variables, which in many instances one can achieve more appropriately using virtuals instead of
absolute weights. In particular, the indicators used in the application portion of this paper to describe the differ-
ent aspects of basketball are measured in units such that the comparisons between the corresponding absolute
weights might become meaningless (see Sarrico & Dyson, 2004, for a discussion on the use of virtual weights).

The following properties of Model 1 are of interest:
Proposition 2. ¢, > 0.

Proof. Because the DMU ’s in M are assumed to be Pareto-efficient points on the frontier, there exists at least
one optimal solution of the dual multiplier formulation of the CCR model for these units with nonzero weights.
This guarantees that ¢, >0, because of the maximization in Model 1.

Furthermore, ¢, provides insight into how much model DMU 4 needs to unbalance the relative importance
attached to the different inputs and to the different outputs to be rated as efficient. As indicated earlier, (pjl €(0,1],
and the lower the value of ¢, the larger the differences in the relative importance attached to the variables
considered. If, for example, @, = 0.2, model DMU , cannot be rated as efficient with a set of weights in which
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the lowest virtual input is higher than 20% of the highest one and the lowest virtual output is higher than 20%
of the highest one. On the contrary, if ¢, =1, DMU 4 could be rated as efficient even with a profile of weights
with the same virtual for all the inputs and the same virtual for all the outputs. The latter case might indicate
that DMU, performed well on all the variables.

Corollary 1. If (V) ..., vy, 1 5., 1) is an optimal solution of Model 1 for a given DMU, in M, then v{" >0,
i=l,...m,and 1 >0, r=1,...s.

Proof. Trivial.

The corollary is an important result because it guarantees that the profiles provided by Model 1 for the
model DMUs do not have zero weights.

The Remaining DMUs

Suppose that DMU| is a given unit that does not belong to M. For such DMUs, one needs to choose the
optimal solution of the following LP problem as the profile of weights for use in the calculation of the cross-
efficiencies:

MaX zufyw (2)
r=I1
s.t.
vix, =1, Q.1
i=1
—Z:vidxij +Zufyrj <0, j=1,..,n, (2.2)
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where ¢ is defined as the scalar ¢ = min o
je

Model 2 corresponds to the second step of the two-step procedure in Ramon et al. (2010a). The main dif-
ference is the replacement of the set E of extreme efficient DMUs with that of the model DMUs, M, in the
calculation of the minimum ¢ (in addition, virtuals instead of absolute weights are required in Model 2). Thus,
the model DMUs are now used to specify the limit for the allowable differences in virtuals in the assessment
of the remaining units. To be specific, DMU  is assessed with weights in which both the virtual inputs among
themselves and the virtual outputs among themselves cannot be more dissimilar than those of the model DMU
that needs to unbalance more its weights (as measured by @) to be rated as efficient.

Corollary 2. ¢ > 0.

Proof. Trivial because of Proposition 2.



Avoiding Large Differences in Weights in Cross-Efficiency Evaluations: Application to the Ranking of Basketball Players 203

With Model 2, assessment of each nonmodel DMU occurs with a set of strictly positive weights. The ap-
proach aids in avoiding one of the main difficulties with the weights provided by the CCR model for most of the
inefficient DM Us in cross-efficiency evaluation (see further discussion in the application portion of this paper).

In practice, many of the inefficient DMUs belong to FU NF. For these DMUs, the CCR model provides
weights with zeros, and these optimal solutions are generally unique. Model 2 allows for reassessment of
the efficiency of each of the DMUs in FuUNF with reference to a different set of weights, also used in the
calculation of the cross-efficiencies, to prevent unrealistic weighting schemes in cross-efficiency evalu-
ations. As for the DMUs that are not model DMUs, if these need to unbalance their weights more than
does the model DMU with the most dissimilar weights (i.e., more than @) to achieve their DEA efficiency
rating, they will have a lower efficiency score (in particular, the efficient DMUs may become inefficient).
Otherwise, they will maintain their efficiency assessment with the CCR model, and with Model 2, one will
choose among their optimal weights satisfying 2.3 to 2.6.

The Cross-Efficiency Scores

Based on the choice of weights proposed above, next one would need to obtain the cross-efficiency scores.
If one denotes by (v} ,...,vi .1} ,...,us ) the optimal solution of either Model 1, if the corresponding DMU, is
in M, or Model 2, if DMU_ is not a model DMU, then the cross-efficiency of a given DMU; using the profile
of weights provided by DMU  is obtained as follows:

Doy,
Ed' — r=1

1y m

©)

Therefore, the cross-efficiency score of DMU. is the average of these cross-efficiencies (i.c., the average
of the column corresponding to DMU, in the matrix of cross-efficiencies):

- 1 .
E, :—ZEdj, j=1...,n. ©)
n g

In summary, the proposal was to extend the multiplier bound approach (Ramén et al., 2010a) for use in
cross-efficiency evaluations in an attempt to prevent unrealistic weighting schemes because this approach
guarantees nonzero weights while attempting to avoid profiles with large differences in weights. Incorporating
prior information or expert opinion on the relative importance of the variables into the analysis (e.g., through
AR constraints) often leads to nonzero weights and may further help reduce the dispersion in weights. Ramén
et al. (2010a) aimed at avoiding large differences in weights without requiring prior information and so relied
on that provided by the data. To implement such approach, one eventually needs to specify the value of ¢,
which represents the limit for the allowable differences in weights in the assessment of the DM Us. As for this
specification, the optimal weights of the extreme efficient DMUs are used to that end, and ¢" is defined as
the minimum of the ratios between the minimum and the maximum weights in the optimal solutions of the
DMUs in E. The route followed in the approach to cross-efficiency evaluation in Ramén et al. (2010b) is very
similar because they specify ¢* by considering all the DMUs assessed without slacks (or, equivalently, those
that have nonzero weights). In the following application, available expert opinion allowed for identification
of some good DMUs or players (termed model DMUs according to Charnes et al., 1990, and Brockett et al.,
1997) whose weights are used to set the value of ¢" in an identical manner by simply replacing the set E, or
that of the DM Us assessed without slacks, with M.
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Application: Ranking Basketball Players

Data and Model Specification

The data relevant in this application are ACB official statistics from the ACB League website (http:/www.
acb.com/) corresponding to the 2008-2009 season. For players to appear in ACB statistics, they must have
played at least two thirds of the games in the regular season; the sample pertinent to this application is 158
players. The players have been classified into five groups according to their position: playmaker, guard, small
forward, power forward, and center, with the purpose of ensuring homogeneous samples when assessing the
relative efficiency of the players.

As for the selection of variables, the application includes the same indicators as in Cooper et al. (2009),
which reflect the main aspects of the game (shooting, rebounding, ball handling, and defense), as follows:

1. Adjusted field goal (AFG) = (PTS - FTM)x AFG% , where PTS = points made (per game), FTM

PTS-FTM
= free throws made (per game), and AFG% (adjusted field goal percentage) = T XFGA where
X

FGA = number of field goal attempts. AFG% is used in NBA statistics for the purpose of measuring
shooting efficiency by taking into account the total points a player produces through his field goal
attempts. The intuition behind this adjustment is largely to evaluate the impact of ‘three-point shoot-
ing’. Therefore, AFG is a shooting indicator adjusted for opportunities.

Adjusted free throw (AFT) = FTM x FT%, where FT% = free throw successes percentage.
Rebounds (REB) = number of rebounds per game.

Assists (AST) = number of assists per game.

Steals (STE) = number of steals per game.

AN

Inverse of turnovers (ITURN) = This application involved using the inverse of the number of turnovers
per game to treat the information regarding this indicator as an output that decreases with increases
in turnovers, instead of an input. The approach is necessary to obtain an index of the same form as
the one evident in the ACB League.

7. Nonmade fouls own (NFO) = 5 — FO, with FO = number of fouls made (per game) by the assessed
player. The purpose of this transformation is the same as in ITURN.

8. Fouls opposite (FOPP) = number of fouls per game the opposite players have made on the assessed
player.

The DEA model used is the output-oriented CCR model with a constant input and with outputs being
the indicators above described? (note that in this case, the cross-efficiencies would be the inverse of those in
Model 3, which are greater than or equal to 1). No additional distinctions regarding a specific playing style
for the players in a given position (e.g., an assessment of their defensive or offensive games) are included but
could be by means of a specific selection of variables, by using other model players purposely selected or
by imposing some preferences over these variables with weight restrictions. In the latter respect, note that
in contrast to Cooper et al. (2009), the approach within this paper does not include the opinion of experts on
the relative importance of different aspects of the game. In the present paper, the expertise is useful only to
identify some model players, whose weights are required to set a limit for the allowable differences in weights
in the assessments of the players.

The purpose of the application is to make a cross-efficiency evaluation of the players in the position of cen-
ter. The sample of centers is 35 players. Table 1 reflects the data together with the CCR efficiency scores. The
ACB MVP awards (2008-2009) were useful in selecting the model players. Based on the opinion of coaches,
players, media, and supporters, the ACB League awards MVP status to the player with the best score obtained
as the sum of the voters’ scores. The MVP results corresponding to the 2008-2009 season appear in Table 2.
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Table 1

Data and CCR Efficiency Scores

205

Player CCR score AFG AFT REB AST STE ITURN NFO FOPP
Bueno, A. 1.1744 5.76 1.26 4.13 0.66 1.00 0.52 2.28 3.03
Ramos, P.J. 1.3821 3.34 0.30 4.04 0.15 0.19 0.57 2.31 1.04
Triguero, J. 1.2202 227 1.60 4.25 0.56 0.94 0.86 2.00 2.44
Savanovic, D. 1.0000 3.75 1.39 3.57 1.20 0.83 0.67 3.20 2.37
Hdez-Sonseca, E. 1.1568 3.23 1.72 5.43 0.87 0.97 0.61 247 2.17
Wideman, T. 1.3055 3.85 1.99 4.19 0.72 0.78 0.50 2.09 3.13
Popovic, P. 1.1137 4.97 1.00 3.06 0.75 0.31 0.67 2.78 1.72
Junyent, O. 1.0000 1.57 1.01 2.67 0.96 0.33 1.20 3.08 1.54
Vazquez, F. 1.0000 6.56 2.09 6.65 0.68 0.97 1.29 3.03 2.61
Andersen, D. 1.1599 3.50 1.49 3.58 1.06 0.39 0.74 2.58 1.97
Santiago, D. 1.2297 2.37 0.94 1.84 0.63 0.31 0.64 2.56 2.03
Archibald, R. 1.2115 3.81 1.75 4.31 0.63 0.78 0.52 1.63 4.22
Ndong, B. 1.0865 3.90 2.05 4.88 0.81 0.84 0.76 2.72 2.56
Doblas, D. 1.6849 4.08 1.34 438 1.06 0.56 0.37 1.31 2.94
Marconato, D. 1.0417 1.82 0.39 3.42 0.48 0.35 1.24 2.84 0.77
Borchardt, C. 1.0000 5.67 1.68 9.88 1.08 0.65 0.39 2.15 5.46
Maric, A. 1.1054 1.66 0.96 3.50 0.38 0.38 0.94 2.88 1.84
Guardia, S. 1.1717 3.27 1.20 3.72 0.72 0.75 0.89 2.59 241
Perovic, K. 1.1197 4.26 1.59 3.94 0.47 0.84 0.67 2.72 2.75
Miralles, A. 1.1816 2.28 0.57 3.31 0.41 0.94 0.89 2.34 1.31
Kugqo, E. 1.3572 227 0.86 1.91 0.50 0.23 0.73 2.36 1.14
Asselin, J. 1.0875 6.31 1.46 4.84 1.00 0.94 0.49 2.13 2.48
Rubio, G. 1.1071 3.05 2.27 4.06 0.84 0.52 0.49 2.52 3.74
Ibaka, S. 1.0000 3.54 0.68 4.60 0.20 0.33 1.03 3.33 1.10
Alzamora, A. 1.0405 0.72 0.88 2.58 0.52 0.35 1.24 2.77 2.52
Eley, B. 1.1998 3.33 1.26 5.74 0.83 1.22 0.43 1.26 3.26
Fernandez, J. 1.0163 1.35 0.40 2.20 0.17 0.47 1.20 3.07 1.10
Garcés, R. 1.2051 1.63 0.55 4.25 0.19 0.56 1.03 2.56 1.66
Barnes, L. 1.2289 3.73 1.04 6.25 0.78 0.97 0.64 2.25 1.72
Fajardo, D. 1.2156 3.19 1.16 591 1.19 1.00 0.58 2.25 1.88
Savané, S. 1.1490 4.36 1.26 4.66 1.19 0.72 0.71 2.50 2.34
Reyes, F. 1.0000 6.79 2.77 9.40 1.77 1.30 0.57 2.63 5.33
Splitter, T. 1.0000 7.00 2.63 6.27 2.15 1.50 0.58 1.73 5.19
McDonald, W. 1.2565 3.47 0.39 4.06 0.63 0.44 1.00 1.94 1.06
Barac, S. 1.0109 0.92 0.35 3.09 0.52 0.26 1.28 2.57 0.57
Table 2
MVP Award Scores (Season 2008-2009)

Player Position Total Coaches Players Media Supporters

Felipe Reyes Center 90 25 25 25 15
Igor Rakocevic Guard 75 25 10 15 25
Tiago Splitter Center 40 15 15 10 0
Fran Vazquez Center 40 10 15 5 10
Juan Carlos Navarro Guard 23 5 10 3 5

Note. Retrieved from http:/www.acb.com
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Table 2 shows the five players selected for the final election of the MVP. Felipe Reyes won the 2008-2009
ACB MVP award with a total score of 90 points. Three of the five players were centers: Felipe Reyes, Tiago
Splitter, and Fran Vazquez. These three players served as the model DMUs in the current analysis because
they were the best players in that position in the opinion of the four communities involved in developing the
ACB League.?

The Cross-Efficiency Evaluation

Let M:={Reyes, Splitter, Vazquez} be the set of model players. The optimal absolute weights provided
by both Model 1 and Model 2 (Model 1 for the model players and Model 2, after setting ¢" = 0.18388, for the
remaining players) appear in Table 3.

Table 3
Cross-Efficiency Evaluation: Absolute Weights

Player AFG AFT REB AST STE ITURN NFO FOPP (p:l
Bueno, A. 0.03963  0.03322  0.01018  0.06398  0.22833  0.28033  0.10009  0.01385
Ramos, P.J. 0.06317  0.12877  0.05229  0.25239  0.20191  0.37361  0.09151 0.03739
Triguero, J. 0.02071 0.02933  0.01104  0.08340  0.27215  0.29501 0.12757  0.01925
Savanovic, D. 0.01336  0.03610  0.01404  0.17099  0.06007  0.40838  0.08508  0.02115
Hdez-Sonseca, E. 0.01576  0.02959  0.00936  0.05870  0.28621  0.31410  0.11216 ~ 0.02348
Wideman, T. 0.01376 ~ 0.14455  0.01265  0.07368  0.06779  0.31836  0.13756  0.01695
Popovic, P. 0.05015  0.04569  0.01495  0.09303  0.14653  0.37353  0.08954  0.02664
Junyent, O. 0.03782  0.05846  0.02222  0.06183  0.17776  0.26853  0.10451  0.03843
Vazquez, F. 0.00904  0.02838  0.00892  0.08747  0.06123  0.24948  0.10627  0.02268  0.18388
Andersen, D. 0.01546  0.03640  0.01512  0.13173  0.13989  0.39900  0.11412  0.02752
Santiago, D. 0.02454  0.06166  0.03155  0.12235  0.18614  0.49429  0.12345  0.02864
Archibald, R. 0.01631  0.03554  0.01442  0.09952  0.07962  0.55899  0.03828  0.08018
Ndong, B. 0.01248  0.12944  0.00999  0.05991  0.05770  0.29808  0.09738  0.01900
Doblas, D. 0.05299  0.02976  0.00909  0.15257  0.07072  0.58814  0.05302  0.07364
Marconato, D. 0.03255  0.15307  0.01733  0.12246  0.16699  0.25987  0.11352  0.07654
Borchardt, C. 0.01045  0.03535  0.03260  0.05502  0.09062  0.15041  0.02751 0.05900
Maric, A. 0.03565  0.06180  0.01693  0.15801 0.15801  0.34238  0.11208  0.03214
Guardia, S. 0.01759  0.04791 0.01545  0.12229  0.07660  0.35148  0.12045  0.02387
Perovic, K. 0.01105  0.02964  0.01195  0.10042  0.30340  0.37900  0.09416  0.01712
Miralles, A. 0.02057  0.08212  0.01416 ~ 0.11548  0.27215  0.28703  0.10886  0.03574
Kuqo, E. 0.02606  0.06861 0.03104  0.11851 0.26071  0.43942  0.13633  0.05214
Asselin, J. 0.03704  0.02938  0.00889  0.04300  0.24998  0.25699  0.10984  0.01731
Rubio, G. 0.01293  0.09457  0.00970  0.04703  0.07642  0.40385  0.08525  0.05732
Ibaka, S. 0.06996  0.06667  0.01607  0.22793  0.13676 ~ 0.23965  0.07437  0.04144
Alzamora, A. 0.08200  0.06709  0.02296  0.11480  0.16699  0.25987  0.11616  0.02355
Eley, B. 0.02114  0.05581  0.01406  0.08514  0.31418  0.43474  0.05578  0.02157
Fernandez, J. 0.04383  0.14762  0.02693  0.35552  0.12697  0.26853  0.10508  0.05387
Garcés, R. 0.03631 0.10852  0.01394  0.31602  0.10534  0.31217  0.12575  0.03578
Barnes, L. 0.01122  0.04020  0.02384  0.05362  0.23515  0.35595  0.10125  0.02437
Fajardo, D. 0.01308  0.03584  0.00706  0.12866  0.22680  0.38981 0.10080  0.02224
Savané, S. 0.01158  0.03994  0.01084  0.16717  0.07024  0.38607  0.10982  0.02154
Reyes, F. 0.01840  0.04509  0.01330  0.07075  0.09615  0.22083  0.04747  0.02344  1.00000
Splitter, T. 0.02765  0.02399  0.01008  0.08979  0.12894  0.28923  0.03650  0.01217  0.32662
McDonald, W. 0.01706  0.15169  0.01459  0.09480  0.13544  0.32224  0.16632  0.05577

Barac, S. 0.06450  0.16894  0.01919  0.11357  0.22714  0.25219  0.12562  0.10483
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These weight profiles have the least dissimilar virtuals in the sense that the lowest input (output) virtual is
not lower than 18.39% of the highest one. Thus, the approach avoids the profiles with the largest differences
in the roles that the different aspects of the game play in the assessment of the effectiveness of players in an
attempt to prevent unrealistic weighting schemes. This, in particular, has guaranteed nonzero weights, as
evident in the table, which means that no aspect of the game has been ignored in the assessment.

The values ¢, for the model players in Table 3 show how much they need to unbalance the importance
attached to the different aspects of the game to be rated as effective players. The value ¢, =1 for Felipe Reyes,
the MVP, indicates that he could be assessed as an effective player even with a set of weights in which all the
variables would contribute equally to the score of effectiveness. Thus, Reyes is a good player in all aspects of
the game. Tiago Splitter, with ¢, =0.32662, needs to unbalance his virtual weights: With a profile of weights
in which the minimum virtual was greater than 32.66% of the maximum virtual, he would not be classified
as an effective player. Fran Vazquez is the model player who needs to use the most dissimilar virtuals to be
rated as effective. Therefore, his value, ¢, =0.18388, is actually that used to set ¢", which is the limit for the
allowable differences in virtual weights used in the assessment of all the players. Therefore, all the players
are permitted to choose their weights freely provided that the minimum virtual is not lower than 18.39% of
the maximum virtual.

Note that the CCR model revealed four other players as relative effective centers: Savanovic, Junyent,
Borchardt, and Ibaka. Obviously, basketball experts would not agree with this result. From a technical point
of view, these players took advantage of DEA total weight flexibility to be rated as effective players. Solving
Model 1 for them provides their ¢, 's (because these are extreme efficient points on the frontier) and alternate
optima for their weights, with at least one of these optimal solutions having nonzero weights. The values are
0.0269, 0.0136, 0.0231, and 0.0079, respectively, which show that the players need to unbalance their virtual
weights drastically to be assessed as effective. Using these players in the proposed approach to specify the
value ¢, which would be ¢" = 0.0079, would allow for larger differences in the virtual weights (still guar-
anteeing nonzero weights). Note that as ¢* tends to 0, the results obtained move closer to the results that the
CCR model would provide.

Table 4 illustrates the matrix of cross-efficiencies calculated with the optimal weights from Table 3 and the
corresponding cross-efficiency scores, which are the averages of the cross-efficiencies in each column (top 15
players reported to conserve space). The corresponding ranking of centers appears in Table 5.

Cross-efficiency evaluation facilitates an ordering of the model players. With this approach, the cross-
efficiency score of the MVP, Felipe Reyes, equals 1, which means that all the players have evaluated him as
an effective player. The other two model players, Splitter and Vazquez, also exhibit a high cross-efficiency
score, 1.045696 and 1.0577046, respectively, which shows that the rest of the players provided good evalua-
tions of them as well.

As for the remaining players, Borchardt ranks fourth, with a substantially lower cross-efficiency score of
1.321099. Basketball experts would not be surprised that Borchardt ranks high seeing that he has caught more
rebounds and provoked more fouls than any other center. He further won the MVP award for several weeks
and months. Ndong, who ranks fifth, also played a good season. After him, Savanovic, initially rated as ef-
fective, ranks sixth. The other players assessed as effective under the CCR model now rank far lower under
the cross-efficiency evaluation because the approach stops them from taking advantage of DEA total weight
flexibility.* In general, all the results are consistent with ACB basketball expert opinion.
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Table 5
Ranking
Rank Name Cross-efficiency score Rank Name Cross-efficiency score

1 Reyes, F. 1.00000 19 Alzamora, A. 1.56233
2 Splitter, T. 1.04570 20 Ibaka, S. 1.56657
3 Vazquez, F. 1.05770 21 Wideman, T. 1.57541
4 Borchardt, C. 1.32110 22 Archibald, R. 1.62114
5 Ndong, B. 1.34886 23 Marconato, D. 1.64152
6 Savanovic, D. 1.37091 24 Popovic, P. 1.66117
7 Savané, S. 1.42805 25 Eley, B. 1.67099
8 Asselin, J. 1.46013 26 Maric, A. 1.69189
9 Guardia, S. 1.46647 27 Fernandez, J. 1.70276
10 Hdez-Sonseca, E. 1.46702 28 Miralles, A. 1.70369
11 Junyent, O. 1.46735 29 Garcés, R. 1.72055
12 Perovic, K. 1.47773 30 McDonald, W. 1.76130
13 Bueno, A. 1.49345 31 Barac, S. 1.76708
14 Fajardo, D. 1.50771 32 Doblas, D. 1.87050
15 Triguero, J. 1.53220 33 Santiago, D. 1.92531
16 Rubio, G. 1.53933 34 Kuqo, E. 2.06676
17 Barnes, L. 1.54537 35 Ramos, P.J. 2.31694
18 Andersen, D. 1.55841

Analysis of Sensitivity

Analysis of the sensitivity of the results to the specification of the value ¢*, which represents the limit for
the allowable differences in virtual weights in the assessment of the players, provided further insight. Because
¢" is initially set at 0.1838 (according to the differences in weights observed in the model players), repetition
of the cross-efficiency evaluation for the values of ¢ around 0.1838, going from 0.1 to 0.25 by 0.025, was
carried out. Table 6 indicates the rankings and the cross-efficiency scores of the players for each value of ¢".

Reyes ranks first regardless of the specification of ¢*. The top eight players remain unchanged for values
of ¢" greater than 0.1838 (i.e., more demanding with the differences in virtual weights allowed). Players,
such as Guardia and Junyent (more specialized), reflect lower rankings as ¢" increases, while other players,
such as Hernandez-Sonseca, Bueno, and Perovic, maintain their positions or rank higher. When ¢" decreases
(i.e., when more differences in virtual weights are allowed), Splitter and Vazquez exchange positions so that
Vazquez ranks second and Splitter third. Borchardt and Ndong stand in fourth and fifth positions (except for
the case @" = 0.1, where Savanovic ranks higher). As expected, some players, such as Junyent, rank higher
under conventional DEA.

Comparison to Other Approaches

Using real data highlights some issues of interest hardly addressed in the literature regarding the choice of
weights in cross-efficiency evaluations. The selection of weights for inefficient DM Us merits detailed analysis.
In practice, many of the inefficient DM Us generally have a unique optimal solution for their weights in the
DEA model, and more important, the solution has several zeros. Due to this uniqueness, in cross-efficiency
evaluations based on a choice of weights among the alternate optima in the CCR model, these DM Us can only
choose this optimal solution as weight profiles for calculation of the cross-efficiencies. Such is the case in many
of the existing approaches in the literature. For example, in the benevolent and in the aggressive formulations,
the secondary goal used is based on such a choice both in the cases of the efficient and inefficient DM Us,
which try to globally maximize or minimize (respectively) the resulting cross-efficiencies.
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Table 7 includes the optimal weights provided by the CCR model for the ineffective players in the present
application. Note that these are the unique solutions in the corresponding formulations. Many zeros are evident,
which means that the cross-efficiencies calculated with the weight profiles provided by all these players ignore
many of the variables initially considered for the analysis. In particular, the table shows that most of the inef-
fective players attach a zero weight to the variable REB, which means that their profiles ignore rebounding,
which is a very important aspect of the game for a center. The same phenomenon is apparent with the weights
of the variables concerning shooting, AFG and AFT, for many of the ineffective players, so their profiles will
also disregard this crucial aspect of the game in the cross-efficiency calculation. In such situations, one cannot
expect that the effects of these unrealistic weighting schemes are cancelled out in the summary of the cross-
efficiency evaluation (the current analysis shows 28 inefficient players out of 35). Assessing the inefficient units
using Model 2 allows for assessment of the effectiveness of these players with reference to Pareto-efficient
points on the frontier and prevention of the optimal weights provided by the CCR model for them.

Table 7
Optimal DEA Weights for Ineffective Players

Player AFG AFT REB AST STE ITURN NFO FOPP
Bueno, A. 0.1406 0 0 0 0 0 0.0833 0
Ramos, P.J. 0 0 0.0495 0 0 0 0.3467 0
Triguero, J. 0 0 0 0 0.6293 0.4741 0 0
Hdez-Sonseca, E. 0 0 0 0 0.3310 0 0.2757 0
Wideman, T. 0 0.1807 0 0 0 0.3057 0
Popovic, P. 0.0242 0 0 0.0400 0 0 0.3056 0
Andersen, D. 0 0.0403 0 0.1691 0 0.1626 0.2480 0
Santiago, D. 0 0 0 0 0 0.0625 0.3239 0.0640
Archibald, R. 0 0 0 0 0 0.6006 0 0.1636
Ndong, B. 0 0.1467 0 0 0 0 0.2575 0
Doblas, D. 0.2254 0 0 0 0 0.0544 0.0533 0
Marconato, D. 0 0 0 0 0 0.8065 0 0
Maric, A. 0 0 0 0 0 0.0638 0.2957 0.0488
Guardia, S. 0 0 0 0 0 0.0563 0.3084 0.0623
Perovic, K. 0 0 0 0 0 0.0600 0.2943 0.0582
Miralles, A. 0 0 0 0 0.5653 0.1913 0.1280 0
Kugqo, E. 0 0.0232 0 0.08 0 0.1364 0.3554 0
Asselin, J. 0.1473 0 0 0 0 0 0.0329 0
Rubio, G. 0 0.1499 0 0 0 0 0.2623 0
Alzamora, A. 0 0 0 0 0 0.5242 0 0.1391
Eley, B. 0 0 0.0401 0 0.6325 0 0 0
Fernandez, J. 0 0 0 0 0 0.2583 0.2250 0
Garcés, R. 0 0 0 0 0 0.3100 0.2654 0
Barnes, L. 0 0 0 0 0.3510 0 0.2933 0
Fajardo, D. 0 0 0 0 0.3500 0 0.2889 0
Savané, S. 0.0115 0 0 0.2105 0 0.1828 0.2320 0
McDonald, W. 0 0 0 0.2720 0 0.8300 0 0
Barac, S. 0 0 0 0 0 0.7826 0 0

Table 8 includes the choice of weights with the profiles provided by the effective players using the well-
known benevolent formulation to observe the effects of these weight profiles on a cross-efficiency evaluation.’
Many zero weights are apparent in the profiles of the effective players as well (the aggressive formulation
usually yields more zeros). Even Felipe Reyes has zeros in five variables and exhibits the highest virtual in
NFO, 0.694. Obviously, such a profile of weights provides a misleading picture of Reyes. Note also that all the
effective players attach a zero weight to the variables AFG and AFT, which means that the profiles provided
by these players will ignore the aspects of shooting in the calculation of the corresponding cross-efficiencies.
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Table 8

Weight Profiles for Effective Players (Benevolent Formulation)

Avoiding Large Differences in Weights in Cross-Efficiency Evaluations: Application to the Ranking of Basketball Players

Player AFG AFT REB AST STE ITURN NFO FOPP
Savanovic, D. 0 0 0 0 0 0.0502 0.2635 0.0520
Junyent, O. 0 0 0 0.1073 0 0.1391 0.2234 0.0269
Vazquez, F. 0 0 0 0 0 0.0502 0.2635 0.0520
Borchardt, C. 0 0 0.0910 0 0 0.2561 0 0
Ibaka, S. 0 0 0.0057 0 0 0.0279 0.2698 0.0412
Reyes, F. 0 0 0 0 0 0.0502 0.2635 0.0520
Splitter, T. 0 0 0 0.2352 0.0678 0.3181 0.1201 0

Table 9 indicates the cross-efficiency scores and the associated rankings corresponding to the weight
profiles of the benevolent formulation. To be precise, the cross-efficiency scores are the average of the cross-
efficiencies, calculated using the weights in Tables 7 and 8 depending on whether the corresponding player
is effective or ineffective. As expected, this approach provides results that are not consistent with the ACB
expert views: Fran Vazquez ranks first, with a cross-efficiency score of 1.012572, which is substantially bet-
ter than that of Reyes, at 1.113199, who now ranks second. In addition, some players, such as Savanovic and

Ibaka, are at the top of the ranking before other players, such as Splitter.

Table 9

Ranking (Benevolent Formulation)

Rank Player Cross-efficiency score Rank Player Cross-efficiency score
1 Vazquez, F. 1.0126 19 Barnes, L. 1.4758
2 Reyes, F. 1.1132 20 Garcés, R. 1.4874
3 Savanovic, D. 1.2324 21 Fajardo, D. 1.4910
4 Ibaka, S. 1.2519 22 Asselin, J. 1.4943
5 Ndong, B. 1.2705 23 Rubio, G. 1.4993
6 Splitter, T. 1.3113 24 Miralles, A. 1.5051
7 Perovic, K. 1.3276 25 Triguero, J. 1.5357
8 Guardia, S. 1.3308 26 Alzamora, A. 1.5435
9 Savané, S. 1.3539 27 Wideman, T. 1.5668
10 Junyent, O. 1.3602 28 McDonald, W. 1.6435
11 Fernandez, J. 1.4098 29 Barac, S. 1.6461
12 Hdez-Sonseca, E. 1.4110 30 Santiago, D. 1.6665
13 Marconato, D. 1.4137 31 Archibald, R. 1.7104
14 Bueno, A. 1.4434 32 Kuqo, E. 1.7830
15 Andersen, D. 1.4486 33 Ramos, P.J. 1.8489
16 Borchardt, C. 1.4522 34 Eley, B. 1.9535
17 Maric, A. 1.4548 35 Doblas, D. 2.0896
18 Popovic, P. 1.4624
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Conclusions

The purpose of this paper was to extend the multiplier bound approach (Ramoén et al., 2010a) for use in
cross-efficiency evaluations with the aim of preventing unrealistic weighting schemes. The proposed approach
involved guaranteeing nonzero weights and attempting to avoid profiles with large differences in weights.
In the case developed the limit for the allowable differences in weights is specified from those observed in
some model DMUs.

The paper included an application of the proposed approach to the ranking of basketball players in the
context of the Spanish basketball league (the ACB League); available information allowed for the identification
of some model players. Care is required in the choice of the weights made by the inefficient DMUs in cross-
efficiency evaluations. In practice, many of these DMUs have a unique optimal solution with several zeros
for their weights in the CCR model; therefore, these weight profiles will be those used in the cross-efficiency
evaluations based on a choice among the alternate optima provided by this model. As evident in the applica-
tion, the weights may have an undesired effect on the resulting cross-efficiency scores and lead to conclusions
not consistent with prior knowledge or expert opinion. Thus, in the approach proposed, the inefficient DM Us
are reassessed with a model that prevents from using the weights provided by the CCR model. The approach
produced satisfactory results in the case of ranking basketball players.

Footnotes

1 According to the classification of units in Charnes, Cooper, and Thrall (1991), the DMUs in E and E" are Pareto-
efficient. E consists of the extreme efficient units, whereas E” relates to Pareto-efficient units that can be expressed as
a combination of DMUs in E. F is the set of weakly efficient units. The DMUs in NE, NE’, and NF are inefficient and
are projected onto points on the frontier that are in E, E’, and F, respectively.

2 A departure is apparent here from the more customary efficiency analyses to a focus on effectiveness in the sense that
the analysis includes no reference to resources consumed (see Prieto & Zofio, 2001) as in the efficiency evaluations
evident in microeconomics. The approach confines attention to player outputs, such as points scored and/or percentage
of free-throw successes, and leaves out elements such as player salaries, but does not include benefit measures, such as
revenues earned, or similar considerations.

3 Note that the approach followed in this paper would not work with, for example, the playmakers because information
on model players in that position is not available.

4 Note that the four nonmodel players initially rated as effective now become ineffective even with their own weights in
Model 2. For example, see the case of Borchardt (1.1627), Savanovic (1.2710), and Junyent (1.6004) in Table 4.

5 These weights have been obtained by means of a formulation (Liang et al., 2008a) that is equivalent to using as
surrogate the differences between the numerator and the denominator of the CCR efficiency score in ratio form.
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