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AN INTRODUCTION TO DISTRIBUTIONS AND CURRENTS

An Introduction to Distributions and Currents

Miércio Gomes Soares

1. Introduction

These notes are intended as a somewhat vague and preliminary introduction to some
mathematical tools which have proven to be very useful in analysis, geometry and dyna-
mics. The concepts explored here are due to Laurent Schwarz and Georges de Rham. The
first is responsible for the concept of distribution and the latter made enormous contribu-
tions to topology and to this end he developed the concept of current, and both are in fact
very much related. These are subjects which permeate several areas of Mathematics and
we chose to give an idea of how this can be of use in the geometric theory of foliations.
What we present here is not at all a self contained text, on the contrary, we jump from
very elementary results to deep ones in the hope that the reader will grasp these ideas and

their usefulness.

2. Distributions

2.1. Test functions
2.1.1. The space D(U)

Throughout this section U C R™ will denote a nonempty open set and, unless otherwise
stated, |z| is the euclidean norm of x € R™, |z| = \/x? +--- + 22.

C(U) denotes the space of infinitely differentiable complex valued functions with
compact support defined in U, that is, functions ¢ : U — C with partial derivatives of
all orders and such that supp(¢) = {x € U : ¢(x) # 0} is a compact set.

Notation: a = (a1, ...,an) € (Z30)", la| =1 + -+ + an,

o (2 (2"
8¢_(61’1) (61n> ¢-

Definition 1. The space D(U) of test functions is C°(U) together with the following

notion of convergence:
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M. G. SOARES

» a sequence ¢; € CP(U) converges in D(U) to the function ¢ € CP(U) if, and only
if, there is some fized compact set K C U such that supp(¢; — ¢) C K for all indices
j and,

» for all multi-indices o, 0%¢; — 0%¢ uniformly on K, that is,

sup [0%¢;(z) — 0%¢(x)| = 0 as j — oo.
zeK
Remark that D(U) is a C-vector space.

2.1.2. Bump functions

Prototypes of test functions are bump functions, which we present now.

Exercise 1. Draw the graphs of the following functions:
f:R =R, f(t)=e VY ift >0, f(t) = 0 if t <0. Show that f € C®(R,R).
g:R—=R, g(t) = f(t+2)f(-t—1).
t o]
1
h:R—R,h(t) = 1 / g(s) ds where A = / g(s)ds.
—00 —00
Finally set ¢ : R" — R, ¢(z) = h(—|z|).
Show that all these functions are C'*°. Show that ¢ satisfies ¢(z) = 0 if |z| > 2,
¢(z) =11if |[z] <1and 0 < ¢(x) <1 for all z € R".
Exercise 2. (Bump functions). Given real numbers 0 < a < b, ¢ > 0 and p € R™ construct
a function ¢qpep : R™ — R of class C*° such that, ¢(z) = 0 for [z — p| > b, ¢(z) = ¢ for
|z —p| <aand 0 < ¢(x) <e for all z € R™

Using the functions ¢g ¢, we can construct partitions of unity. We shall neither define
these objects nor prove their existence, but the interested reader should see G. de Rham’s

book [5]. However we give a proof of a fact which will be useful in the sequel.

Proposition 2. Let K be a compact subset of R™ and U be an open set containing K.
There exists a function & € C°(R™) such that 0 < & <1, supp(§) CU and € =1 on an
open neighborhood of K.

Proof. For each point p € K choose p(p) > 0 such that the ball B(p,3p(p)) C U. Since
K is compact there are finitely many points p, say pi,...,pm, such that
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AN INTRODUCTION TO DISTRIBUTIONS AND CURRENTS

K C UL B(pj, p(p;)). Take the functions @; = () 2p(),1.p;» J = L,---,m, produced
in exercise 2 and define the functions

J
v=¢1; vin=eim[JA-e); 1<ji<m. )
1

Now, for j =1 the equality

J

J
Su=1-TJa -0 (@)
1

1

is obvious. If (2) is true for j < m then, adding vj4; to (2) and using (1) gives

J+1 J J J J+1
Su=> et =1- [0 =)+ e [Ja—0x) =1-[[(1—x)
1 1 1 1 1

so that (2) holds for 1 < j < m. Put £ =) " 1. £ is the required function.

The function £ is called a cut-off function.

Corollary 3. Given a point p € R™ and a neighborhood U of p, there exists a function
& € CF(R™) such that

(i) £ >0 and &(p) > 0.
(i) supp(§) C U.

(ii1) /f(m) dx =1.

Rn

2.2. A Glimpse on Integration
2.2.1. Measures

Lebesgue integration gives a much more comprehensive theory of distributions than
Riemann integration. However, in case the reader is not familiarized with Lebesgue’s
theory, we advise him (her) to go ahead thinking we are doing Riemann integration (si-
tuations at which this will not be possible will be hinted).

The characteristic function x4 of a set A C R"™ is defined by:

49



M. G. SOARES

—_

, ifxeA
xa(z) = . 3)
, ifx & A

o

Definition 4. Let S be a set. A collection ¥ of subsets of S is called a sigma-algebra if

the following axioms hold:

s AeY = A°=U\AecX
w If A1, Ag, ... is a countable family of sets in X, then |2, A; € X.

s SeX.

Any family S of subsets of S can be extended to a sigma-algebra by taking the sigma-
algebra of all subsets of S. Now, consider all the sigma-algebras that contain the family
S, take their intersection and call it ¥ (Ezercise: ¥ is a sigma-algebra.). This is called the

sigma-algebra generated by S.

An important example of a sigma-algebra is B, the Borel sigma-algebra, which is ge-

nerated by the open subsets of R™ or, alternatively, generated by the open balls of R™.

Exercise 3.* Find a subset of R"™ which is NOT contained in B!

Definition 5. A measure (positive) p, defined on a sigma algebra X, is a function
X — Ry U {oo}

such that (@) = 0 and which is countably additive, that is, if A1, Aa, ... is a sequence of

disjoint sets in 3, then

% (U Ai) = ZM(Ai)- (4)

i=0
A set A € ¥ is called measurable.
Exercise 4. Show the following properties of measures:
(i) If Ay, As,...,Ar is a finite collection of disjoint measurable sets then
I (ij Aq;) = Zk: w(A;). This is called finite additivity.
L(;l) IfA ng, A and B measurable, then u(A) < u(B).
(iii) If A; is measurable and A; C Ay C A3 C ---, then llggo w(A) = (G AL>

i=1



AN INTRODUCTION TO DISTRIBUTIONS AND CURRENTS

(iv) If A; is measurable and A; D Ay D A3 D --- and if p(A;) < oo, then
)
IIEEOM(AZ) - (ZDI Ai).

A measure space is then a triple (S, X, ) consisting of a set S, a sigma-algebra ¥ and
a measure u. If the set S contains open sets then B is defined and, if we take ¥ = B, then
1 is called a Borel measure.

Sets of measure zero pose some problems since subsets of sets of measure zero might
not be measurable. But there is a procedure, called the completion of the measure p, to
eliminate this. We won’t need to worry about this. Instead, we will refer to the following
property:

Definition 6. Given a measure space (S, X, ), some property is said to hold p-almost
everywhere, or simply a.e., provided the subset of S for which the property does not hold

is a subset of a set of measure zero.

Undoubtedly one the most important measures is the Lebesgue measure in R”. We will
not construct it here but we urge the reader to look at its construction in a good book,

for instance W. Rudin’s [9]. Another useful measure is.

Example 7. The Dirac delta-measure, §,, where a € R™ is a fized point is defined by

1, ifae A
611(14) = (5)
0, ifagd A

Show that §, is a measure. Since it’s concentrated in a point, in this case 2 could be B or

all subsets of R™. Recalling the characteristic function of A we have

da(A) = xa(a). (6)

2.2.2. Measurable functions and Integrals
Let f : U — R be a function on U. Given a sigma-algebra ¥, we say that f is
measurable (with respect to X) if, for every ¢ € R the set
L?(t) ={zeU : f(z) >t} ismeasurable, that is, LJ? (t) e . (7)
A complex function, f : U — C, f = u + iv is measurable provided its real and
imaginary parts, v and v, are measurable. Also, we say that a nonnegative measura-

ble function f is a strictly positive measurable function on a measurable set A provided

{z € A : f(z) = 0} has measure zero, that is, f is positive a.e. (recall Def. 6).
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Remark that measurable functions are defined in terms of ¥ alone, the existence of a

measure is not necessary.
Exercise 5. Show that the following affirmatives are equivalent:
(1) L; (t) € =.
(ii) LJf(t) ={ze€U: f(z) <t} eX.
(i) L7(t) ={z €U : f(x) >t} € 2.
(iv) L7(t) ={x €U : f(x) <t} eX.
Hence we could have used any of these to define measurability of a function. Hint:
oo
{zeU: fa)>tt=|J{zeU: f(2) >t+1/n}.
n=1
Exercise 6. If ¥ = B in R" then any continuous or lower semicontinuous or upper

semicontinuous function is measurable. Hint: f is lower semicontinuous if LJ? (t) is open

and upper semicontinuous if Ljf (t) is open.

Exercise 7. Show that, if f and g are measurable, then so are the functions
z = af(z) +bg(x), a,b e C, x— f(x)g(x), x — |f(z)|, x — h(f(z)), where h : C — C

is Borel measurable; « — max{f(z), g(z)}.

We now define the integral of a measurable function with respect to a measure p. What
we give here is just a very brief sketch; the interested reader should consult a text on the
subject, like [7].

Let f: U — R>( be a nonnegative ¥ measurable function. Define
Ry(t) = p(L7 (1))
R; is a nonincreasing function of ¢ since L? (t) C L?(s) whenever t > s, that is
Ry :Ryo — Rxg
is a monotone nonincreasing function of ¢. Therefore its Riemann integral exists (could be

o0) and, by definition,

oo

[ t@duta) = [ Ryeyan (®)
U 0

In case f is measurable, nonnegative and [ fdp < co we say that f is summable or
U

integrable.
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Suppose now that f: U — C, f = u + iv with u and v real valued. We split each of

u and v as a difference of two nonnegative functions as follows:

w(z) = uy(z) —u_(x) = méx{u(x),0} — (— min{u(x),0})

v(z) = vy (z) — v—(z) = méx{v(x),0} — (— min{v(z),0}).

If f is measurable, then so are u,u_, vy, v_ and, provided these are summable, we define

/fdu:/u+du—/u_d,u—l—/m.du—/v_d/l“ 9)
U U U U U

Remark 8. We shall write [ f(z)dz in case the measure is the Lebesque measure.
U

An important example is that of the characteristic function of a measurable set A [see

(3)]. If u(A) < oo then x4 is summable and

/XA dp = p(A). (10)

A

2.3. Distributions
Recall the space D(U) defined in 2.1.1.
Definition 9. A distribution is a continuous linear functional on D(U), that is,
T:D(U)—C

satisfies T(Ap) = AT'(¢p), T(p1 + ¢2) = T(d1) + T(¢p2) for all X € C and ¢, ¢1,¢2 € D(U).
Continuity means that if ¢, € D(U) and ¢, —> ¢ in D(U), then T(¢n) — T(9).

The space of distributions on U is denoted by D’(U). Since distributions can be added
and multiplied by complex numbers, this is a C-vector space, dual to the space D(U).

Remark that continuity in D’(U) means sequential continuity.

Convergence of distributions means: a sequence T,, € D'(U) converges in D'(U) to
T eD'(U),
Tm — T

if, for all ¢ € D(U), the numerical sequence T,,,(¢) converges to T(¢),

53



M. G. SOARES

This is indeed a weak kind of convergence.

Now we present examples of distributions that are defined by actual functions.

1

ibe(U). This consists of the class of functions which

To do this we introduce the space L
are Borel measurable on U and, for each point a € U, there exists an open rectangle
R, C U, containing a and such that

/ |f(z)] dz < oo.

a

We could have used open balls R, instead of rectangles. These are called locally summable

or locally integrable functions.

To each f € Li _(U) we define

7y(0) = [ Fa)oe) do ()
U
where ¢ € D(U) is a test function.

Proposition 10. For every locally summable function f, the map Ty given by (11) defines

a distribution on U.

Proof. T} is linear since integration is. First we show the absolute convergence of the
integral in (11). Since supp(¢) is compact there are finitely many points a1, . . ., ax such that
supp(¢) is contained in the union of the open rectangles Ry, ..., R; and | f| is summable in

each R;. We have then Xgp,(4) < XRr, + - -+ Xr, - Hence, since Jg(x)dz = [ xa(z)g(x) dz,
A U
A CU, we get

k
IT(6)] = / J(@)o(x) da| < / @@ de <Y / (@) |6(2)] de <

supp(¢) supp(¢) =R,

k
<|X [1r@lds| sw jo@]=C sw o).
= a€supp(@) a€supp(9)
Suppose now ¢, — ¢ in D(U). Hence we have a fixed compact set K C U such that
supp(¢n — ¢) C K. Then, repeating the estimate above with K in place of supp(¢) and

letting R; denote appropriate open rectangles covering K we get

k

1T (60) — To(@)] = ITy(gn — )| < |3 / 1£(@)] da | sup |én(a) — é(a)] — 0
=g z€K

a constant
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uniformly on K. d

Now we proceed to show that T is uniquely determined by the function f. To do this
we must introduce convolutions. Suppose f and g are complex valued functions in L' (R™),

that is, they are measurable and [ |f(z)|dz < oo, [ |g(z)|dz < co. Their convolution is
R Rn

the function f * g defined by
fra@ = [ fa-vgtdy= [ fGlala -2 (12
R® R™

The last equality says f * g = g * f by a change of variables (exercise). Remark that (12)
is well defined a.c. and f * g € L'(R"™).

Exercise 8. Let A and B be subsets of R"™ and define
A+B={a+b:acAbe B}

Show that if A is closed and B is compact then A + B is closed. Give an example with A
and B closed and A + B not closed.

Let ¢ be a function like in Corollary 3 and € > 0. Put

bl = 5 6 (%) € o). (13)

Lemma 11. Suppose f € LY(R"), f continuous and ¢. with supp(¢) = B(0,1). The
function f x ¢ converges uniformly to f on every compact set K as ¢ — 0. Moreover, for
every € > 0 the function f * ¢ € C°(R™).

Proof. First of all

[odarin=[o(2) 5 = [oway=1.
R?’L ]:RTL R’N,
Then,

(f + ) (@) — () = / (& —9)bely) dy— £(z) / bely) dy = / (& —y) — f(2))bely) dy =
Rn En

IRTI
- / (f(x—y) — F(@)bely) d.
supp(¢e)
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This gives

(o0 @I [ 1Sy [y s 1@y - fE)
supp(¢pe) yesupp(pe

Given K C R" compact let K/ = K + B(0,1) which is also compact. Since f is uni-
formly continuous on any compact set, given € > 0, there exists a 1 > § > 0 such that
[f(x —y) — f(z)] < eforall 2 € K C K" and |y| < §. Take e small enough so that
supp(¢e) € B(0,0) and conclude the first affirmative. Now,

folw) = 5 pulx) = / F(2)belx — 2) d
J

and differentiation under the integral sign gives

aafe = 8a(f * ¢e) = fx* 8a¢6
from which we conclude f. = f * ¢ € C°(R"™). d

Remark 12. We assumed f is continuous in the lemma above, but this hypothesis is
not necessary. However, if we had only f € L'(R") then the proof would require more
machinery from integration theory than we have at hand. Again, the reader should consult
[9]. Anyway, the lemma gives a smooth approzimation of a continuous function on any

compact set.

Proposition 13. Let C(U) be the C-vector space of complex valued continuous functions
defined in the open set U C R™. The map

CU) — D'(U)
f +—— Tf

is linear and injective.

Proof. Linearity follows immediately from the definition of T'y. Once the map is linear,
to show injectivity is enough to show its kernel is the null subspace. Now, f is in the kernel
of f+— Ty if Tf(¢) = 0 for every test function ¢. Let R be the reflection of a function,
R(g(2)) = g(—z) and T, be the translation T,(g(z)) = g(z — ), so that, for e sufficiently
small,

(T1R¢E)(Z) = ‘be(m - Z)
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By (12) we have
fe(T) =f* ¢€(T) = Tf(TIR¢e) (14)

But by Lemma 11 f, converges uniformly to f on compact sets and hence

f(x) = lim f(x) = 1im Ty (T,Rec) = 0.

O
Proposition 13 allows to identify f and Ty whenever f € C(U).
Remark 14. In general, for f € L} (U) the result is
Ty=Ty<=f=g ae. (15)

With this at hand, if T is a distribution in D'(U) of the form Ty for a function f in
Ll

oc(U), then we say that the distribution T is the function f. This allow us to use function

notations for distributions, hence, for every T € D'(U) we write

T() = / T(2)é(z) da,

U

but the reader should have in mind that there is no sense in saying that the distribution T

assumes the value T'(x) at the point x.

Not every distribution is of the form T for some f. A distinguished example is the
Dirac delta-function (recall (5)):

0a(¢) = ¢(a) for afixeda € U. (16)

To see it’s not a Ty take a test function £ as in Corollary 3 with £(a) > 0. If §, = T for
some f € LL _(U) then f =0 a.e. in U \ {a} and, since {a} has meausre zero, f = 0 a.e.

loc

in U which gives Ty = 0, a contradiction since d,(§) # 0.

2.4. Distributions and measures

Let K C U be compact. The space C°(K) is formed by all ¢ € C°(U) such that
supp(¢) C K. For every integer k > 0 we define the C* norm in C°(K) by

[6llry = sup [0%¢()]. (17)

zeU;|a|<k
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Lemma 15. Let T : C°(U) — C be a linear functional. T € D'(U) if, and only if, for
every compact subset K C U, there exists a constant ¢ > 0 and k € Z>o such that

IT@) <cldllwy V¥ ¢eCEK). (18)

Proof. Recall that (Definition 1) ¢; — ¢ in C°(U) if there exists a K C U, K compact,
such that ¢; and ¢ belong to C°(K) for all ¢ and lim ||¢; — ¢|| = 0 for all & > 0. If (18)
holds, then e

T(¢i)) —T(¢) =T(¢ps — ) — 0 as i — oo.

Suppose now T' does not satisfy the hypothesis above. Then we can find a compact set

K C U such that, for every ¢ > 0 and k > 0 there exists ¢.r € C°(K) satisfying
1

[T(pes)| > clldellry- Put @cr = m(bck This gives

_ 1
B 7T ()]

1
[Pe el <7 and [T(pep)l = 1.

But then

lim ¢, —0 in C(U) and T(prr) =0

k—o0 :
and 7T is not continuous, hence is not a distribution. O
Definition 16. Let T € D'(U). The smallest integer k for which (18) holds, for some
constant c, is the order of T on K. The supremum over all compact sets K C U of the
orders of T on K is the order of the distribution T on U.
Exercise 9. (i) Show that T(¢) = ¢®)(0), ¢ € CX(R) is a distribution in D’'(R) of order
<k.

(ii) Show that T as in (i) is of order k in any neighborhood of 0. Hint: Consider

be(x) = 2*p(x/€) where ¢ is a bump function equal to 1 around 0.

o0
(iii) Show that the distribution given by S(¢) = >"(=1)*¢®*) (k) is not of finite order.
0

We now consider distributions of finite order k£ and show they can be identified with
continuous linear forms on the space C¥(U), which is the space of functions of class C*
with compact support in U.

First, convergence in C*(U) follows Definition 1 with the difference that only multi-
indices « with |o| < k are considered. Also remark that, if co > k > m then, a sequence
¢; € CHU) converges in C¥(U) to ¢ implies that ¢; also converges to ¢ in CT(U).
Since D(U) & C*(U) the restriction to D(U) of a continuous linear form on C*(U) is a

distribution of order < m.
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Proposition 17. Let T € D'(U) be a distribution of order < k. Then T extends in a

unique way to a continuous linear form S on C*(U).

Proof. Recall the functions ¢, of (13). If f € CFU) then the functions
fe= [ #* ¢ € C(R™) satisfy 0% f. = 0°f * ¢, for all a with |o| < k and 9% fc — 9*f uni-
formly as € — 0. Now, for all sufficiently small € > 0, the supports supp(fe) are contained
in a fixed compact subset of U (exercise) and then f. € C°(U) converge to f € C*(U).
We have

IT(fe) = T(fo)l = T (fe = fo)l < cllfe = foll )
and || fe = follwy — 0 as €, p — 0, which says that ¢ — T'(f¢) is a Cauchy sequence in C

and hence it has a limit S(f) € C. Since f — f * ¢ is linear we have defined a linear form
S on C¥(U). Moreover

IS(NHI<IS() = T+ TS < IS() = T(fIl + cll fell )

SIS = T(fl +ellfllwy +ellf — fellgy = cll fllwy as € =0

and, as [S(f)| < ¢llfllx), S is continuous on CF(U) and we also have S(f) = T(f) for
f € C*(U). Remark that S is unique (limit of a number sequence) and does not depend
on the choice of the family of functions ¢.. a
We identify T with S, its extension to C¥(U) and write T = S.
A Radon measure is a continuous linear form on the space C2(U) of continuous fun-
ctions with compact support in the open set U C R™. By Proposition 10 (and Remark 14)
T} is a distribution of order 0, hence extends to a unique Radon measure on U called the

measure with density function f.

Definition 18. A distribution T € D'(U) is positive if, for all ¢ € D(U) with ¢ > 0 we
have T(¢) > 0. A measure T on U is positive if T(f) > 0 for all non-negative f € CO(U).
We write T > 0 if T is positive.

We close this first section with the

Theorem 19. A positive distribution is a positive measure.

Proof. Let T € D'(U) be a positive distribution. Given a compact set K C U, let
0 € D(U) be such that ¢ = 1 on K and 0 < p < 1 (Proposition 2). This gives, by
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hypothesis, T'(9) > 0. Let ¢ € C°(K) be real-valued and ¢ = ||¢|| = sup,cx |¢(z)|. Then
co— ¢ >0 and

cT (o) —T(¢) =T(co— ) >0.

It follows that c¢T'(p) — T'(¢) is real and non-negative. Hence T'(¢) is real and

T(¢) <T(o)l¢ll-

If ¢ € CX(K) is complex valued then T(¢) = T(Re¢) + iT(Im¢). Write § = arg T(¢)
and ¢ = Re (e7¢). Then,

IT(¢)] = e'T(9) = T(e '’9)
hence T'(e~"%¢) is real since it equals |T(¢)|, a non-negative real number. But then
T(e779) = T(Re(e7'"9)) = T(¢)

and we get

IT(¢)| = T(p) < T(o)llell < T(o)l&ll-
This shows T" has order 0 and, by Proposition 17, it extends to a unique continuous linear
form T on CY(U).
Now, if f € CO(U) with f > 0, then f. = f * ¢. > 0 since ¢. > 0. It follows that
T(fe) > 0 and, as lir% T(fe) =T(f), that T(f) > 0, hence T is a positive measure. d
€—>
Remark 20. In fact this Theorem can be rephrased as follows:

Let T € D'(U) be a positive distribution. Then, there is a unique positive Borel measure
won U such that u(K) < oo for all compact sets K C U and such that, for all ¢ € D(U)

T() = / o) du(z). (19)
U

Conversely, any positive Borel measure with u(K) < oo for all compact sets K C U defines

a positve distribution via (19).

We do not present a proof of this result because it involves the construction of mea-
sures from outer measures. It is an extension of the so-called Riez-Markov representation
theorem (see [9]).
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2.5. Derivatives

Recall that & = (aq,...,ap) € (Z20)", la| = a1 + -+ + ay,

ap— (2N (2N _ 9
8f_<8x1> (f)xn) foooif= oz;

If f is a C" function on the open set U C R™ then integration by parts gives

/8f(:r)¢ /f e

where ¢ is a test function (exercise), which tells us that

To,1(¢) = —T1(0i9).
We use this to define derivatives of distributions.

Definition 21. If T € D'(U) and « is a multi-index, the distributional or weak derivative
0T is defined by
T(¢) = (1) T(9"9). (20)

Lemma 22. 0%T is a distribution.

Proof. Since differentiation is linear we must only show its continuity on D(U). First
we show that if ¢ € D(U) then so does 0%¢ for all . So, suppose ¢; — ¢ in D(U). Then
supp(0%¢p; — 0%¢) C supp(di — p) C K C U. Let = (Bi1,...,5Bs) be a multi-index. Since
9P (0%¢;) — 0P (0%¢) = 9P+ p; — 0PT2¢ we have that 99F%¢; — 9P+*¢ converges uniformly
to zero on compact sets and hence 9%¢ € D(U). Thus,

(=1)*T(0%;) = (-1)* T(0%) as j— oo
and this is the same as 0T (¢;) — 0*T'(¢) and we are done. d
Lemma 23. 9% : D/'(U) — D'(U) is a continuous map, for all .

Proof. Suppose lim T;(¢) = T(¢) for all ¢ € D(U). Since the 0%¢ are test functions
J—00

we get, by definition of differentiation,

lim 9°T5(¢) = lim (~1)°T3(9°6) = (~1)*T(9"¢) = 9"T(9).

]*)OO
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Remark that this notion of weak derivative extends the usual notion of derivative and
agrees with it provided the usual derivative exists and is continuous. In this weak sense,
all distributions have derivatives of all orders. However, the distributional derivative of a
non-differentiable function (in the usual sense) is not necessarily a function, as is shown

in the following.

Example 24.
The Heaviside function is defined as the distribution associated to the characteristic
function of [0,00) C R, H = X|o,.) € D'(R). Tts derivative is

H'(¢) = —H(¢) = —/¢'(fﬂ) dx = —(0—¢(0)) = ¢(0) V¢ € D(R). (21)
0

Hence, H' = 4y, the Dirac delta function at 0. In general, given an interval [a, b], a < b, its
characteristic function, seen as a distribution, can be writen as x(q,5) = TaH — TpH where
T.H(y) = H(y — x). It follows that

X{a,b] = 5(1 - 5{,.

3. Manifolds

3.1. Definitions

A complex manifold (C*,C*, C¥ = real analytic) of dimension n is a topological
space M, which is Hausdorff, connected and with a countable basis, endowed with an
analytic structure defined as follows: there exists an open covering {Uy}aca of M and
homeomorphisms ¢, : Uy — V, where V, ¢ C* (V, C R") is open, such that the

changes of coordinates

Pa © @El (22)
are holomorphic (C*¥,C®, C%) where defined. ¢, is called a chart and, for
z € M, po(z) = (29,...,25) € C" are called the local coordinates in U,. The collec-

tion {U,, pa} is called a holomorphic (C*¥,C*, C¥) atlas for M.

If M has dimension n, a connected subset N C M is a submanifold of dimension
m < n if, for each z € N there exists a chart {Uy, ¢n}, with z € U,, such that ¢, is a
homeomorphism between U, NN and an open set of C™ x {0} ¢ C™ x C*~™ = C™.
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Given manifolds M and N, amap f : M — N is holomorphic (C*,C>°, C*) provided

the compositions
vpofopy! (23)

are holomorphic (C*¥, 0, C*) where defined, with g and @, charts in N and M respec-
tively.

X C M is an analytic set if, for each z € M there is an open neighborhood U C M of
z and a holomorphic map f : U — C* such that X NU = f~1(0) (¢ may depend on z).

If W C M is open and £ € Zso U {oo,w} then C4(W,C) (C*(W,R)) is the space of

functions of class C* in W. In case W is not open, it is the space of functions which admit

a C* extension to a neighborhood of W.

3.2. Tangent spaces

A complex manifold M of dimension n is naturally a real analytic manifold of dimension
2n. Given a point p € M take a chart {Uy, po} in M with p € U,. The coordinates of the
points in U, are

WQ(Q) = (Zi"(q),...,zg(q))é(cn
= (23(q) + 15 (q), -, 25 (9) +iyr(9))
= (2%(9),¥(q), .-, zx(q),y5(q)) € R ~ C™.

The real tangent space of M at a point p, T,M, is the space of functions of class C*°
(called derivations) v : M — R satisfying:

(i) v is R-linear and
(i) v(fg) = gp)v(f) + f(p)v(g) (Leibniz’s rule).
v is called a tangent vector at p. If f € C°°(M,R) then, by definition,

—1
of p) = M va(p)) and similarly for the y*s.
ox oxs !

[ [

Hence, (p) is a tangent vector at z and

(e}
0x§

0 0 0 0
{87;(1’% G o), @%@)}
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is a real basis of T,M (exercise).

Complexify T, M, that is, T, M C= T, M ® C which means: simply allow multiplication
by complex numbers. This is a C-vector space with dimc¢ T[,]W(C = 2n. For p € U,, choose
for T,MC the basis

(o e ) ) 50

where
0 1/ 0 0 0 1/ 0 0
—)=zz50p —iz—= d =W =27 i— 24
72z 0) = 5 (o)~ iz )t 20) = 5 (G0 +igee) (@)
Let’s examine changes of coordinates (22) in more detail. Set
éaﬂ = $Pa © ‘19[;1

and write

@aﬂ(xlvylv cee 7$7L7yn) = (ulyvlw .. 7un7vn)

(real coordinates). The derivative of éag is given by the matrix

A(u1,v1) O (un, vp)
. 8(x17 yl) 8(37n>yn)
DOyp = .
Mumyow)  Olun,va)
3(5617 yl) 3($myn)
where
8uj au]‘
A(uy, v)) e Oy .
= 1<4,k<n.
O, yr) Ov; Ovj |0 "= hE=T
Oz Oy

Now write éa/:? = (él, . ,(:)n) where (:)j = u; + iv;. Changing from the basis

d 0 1o} 0
to the basis

0 0 0 0
{2 @ ) )}
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Exercise 10. Show that the change from the basis {0/0x;, 0/0y;} to the basis {9/0z;,0/0%;}

is given by the matrix
1/2 1/2 1 i
p— (Y22 e - Y.
—i/2 i/2 1 —i

the matrix representing D(:)aﬁ becomes

—1
p= e 0 O(ur,vr)  O(ug,v1) P 0
8(-751,311) 6(7'”7’1]”)
8(un7 Un) o a(“?u Un)
0o ... p1 O(z1,y1) O(n, yn) 0 --- P
861 aél
L O
8@1 8@1
O oa 0 o
00, 90,
0z1 L Oz L
00, 00,
0 021 0 Oz

Now, changing from the basis

{6%@, (@)oo (2, 6%(@}

to the basis

0 0 0 0
{371@7 D ), az(”}
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the matrix above becomes

021 0zn, 0 0
90, 90, 0 0
021 O0zn, _ _

0, 08

0 -0 0z1 0z,

0 - 0 90, 90,
621

Ozp,
so that the derivative D(:)ag has the matrix

~ S 0
DO, = s
0 Oup
where _
00;
811 =
B ( aZj ) .
1<i,j<n
Hence,

det DO,45 = det O, det Onp = | det Onp)? > 0.

(25)
This means that complex manifolds are (naturally) orientable. For the definition of orien-
tability see [5].

We use this last basis to decompose T}, M € into 2 subspaces:

0 0
T'M = { — e
» < 92, P g (p)>(C
the holomorphic tangent space and

(26)

7...,82n

TN = (i) o)) @)
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the anti-holomorphic tangent space, so
C
T,M" = T;M @ T;M. (28)

The real tangent bundle of M, T'M, is the union TM = Upe a IpM. Now, in local

coordinates, since a tangent vector to M at a point is identified with a vector in R??,

TU, = U TpM = {(p7'l]a) :peUO”UaeRQnL
pela

and we conclude that TU, has a product structure U, x R?", Hence,

T™ = |JTUs = | JUa xR,
[e3 [e3

where, for p € U, NUg, (p,va) € (p,vs) are the same point of TM if, and only if,

va = Dlpa o 93 )(05(0)s. (20)

It follows that T'M is a real analytic manifold obtained by gluing the U, x R?" by means
of the identification given in (29). The changes of coordinates, or transition functions for

TM are given by

Pap = (Pa0 @' D(9aops")). (30)
Also, since the projections U, x R? ™% U, and Uz x R?" LN Up coincide in the inter-
section U, x R?" N Ug x R2" the projection 7 : TM — M given locally by (p,va) = p is
well defined.

Since TM® = TM ® C we deduce from (28) a decomposition
TMC=TMoT'M (31)

where T'M is the holomorphic tangent bundle of M and T M is the anti-holomorphic
tangent bundle of M. The transition functions of 7'M are

(Pa© 95" Oup)

and those of T" M
(@a o 99[;17@&[3)'

If TM* is the real cotangent bundle then TM®* = T'M*@® T" M* are the corresponding
cotangent bundles, with transition functions given respectively by

— = 7 1 _ —1 _ —7 —1
(Qpaogpﬂl7<(@a6@®aﬂ) ) ) ) (@ao@ﬂl7(®£ﬂ) ) ) (@aogpﬁlv(eaﬂ) >
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Let f: M™ — N™ be a holomorphic map, see (23). The matrix of the derivative
Df(p) : T,M® = Ty, N©
with respect to the bases

{8%@» ) ), 6%@)}

of T, M C and

{500, g O g 00, 510 )
of Tj,) N® is given by o
32‘ ® 0
Df(p) = _
0 gi: p).

In particular, if D f(p) is an isomorphism then,

det (gfj (p)>

that is, holomorphic diffeomorphisms preserve orientations.

2
>0,

det Df(p) =

3.2.1. Examples

The most simple example of a complex manifold is C*, n > 1. We will digress on an
important example, that of the projective spaces.
The complex projective space of dimension n, Pg, is the quotient of C"*1\ {0} under
the identification
z~w <= I\ € C* such that z = \w.

The class of a point z is denoted by [z] or (20 : z1 : --- : 2,) and the quotient map
crtl P¢ is denoted by P. We provide P¢ with the topology induced by P, which makes
it a compact space (exercise). Besides, P¢ is a complex manifold with the atlas defined by
{Ui, i}, i =0,...,n, Uy = {[z] € P{ : 2; # 0}, where ¢; : U; — C" is given by

20 Zi Zn
wi(zo:z1: o izm) = | —, 0, —, o, — |,
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where “ 7”7 means omission. To avoid heavy notation let us consider ¢g and ¢;. We have

~ Z1 Zn
@U(ZU:ZIZ"':ZTL) = <1777"'a7) = (.T17...,l’n),
20 20
20 Zj—1 = Zj+1 Zn
pjlzorzr i tzm) = (f»mvf?l’f'“’f
Zj Zj Zj Zj

= (y17"'7yj717yj+17"'7yn)-
) -1
Let Uy; = Up N U;. The change of coordinates Up; ¥j © Po Uy; is given by

.y 5 ge ey

Im maozin i)
.%']' :U]' :U]' .”Cj .%']‘

©j 099071(331,...,1‘”) = (

The derivative D(p; 0 po~1) = 09 : Up; — GL(n, C) is represented by the matrix

1
0 0 0 —— 0 0 0
i
1
= 0 0o -2 o 0 0
Yy )
0 — 0 -2 0 0 0
Zj l']-
0,0 = . (32)
_ 1
0 0 0 -1 — 0
l‘j :Ej
1
0 0 0 -2 o 0 —
l'j Zj
In particular, det®jo = (=1)7(1/z;)"™ = (=1)! (20/2)™™". More generally

D(p;o <p;1) = 0;; satisfies det ©;; = (—1)"17 (z;/2;)" .

A piece of notation. When we take local coordinates in U; = {z; # 0} in Pg, that is,
(z0 @ -+ ¢ z—1 1 ¢ zigr : --- ¢ zy) we cover all of Pg except the set
{(z0: -+t zim1 10 zig1 2 -+ 0 2z) @ 25 € C,j # i} which is aIP’gfl. This set is
called the hyperplane at infinity with respect to Uj.
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3.3. Differential forms

This is a very brief description of differential forms. We urge the interested reader to
refer to [5].

Consider the canonical basis {e1, €2, ..., e} of R" (or C"). The dual basis {dz1, dxs, . ..,dz,}
is defined by

1, ifi=j
0, ifi#j.

Let Q* be the real (complex) algebra generated by dz1,dxs, ..., dz, subjected to the

dCCi(Cj) =

relations
dx; Ndx; =0, dz; A d.Tj = —d:Ej ANdz;if i 7é 7

As a real (complex) vector space a basis of Q* is given by

dr;(1 <i<n), de; Ndxj(i < j), deg Adoy Ndag(i < j < k), ..., doy A--- Nday,

Differential forms on R™ (C") are defined by
QF(R™) or Q*(C") = {functions} ®p or ¢ N
and, to be more precise, differential forms of class C* are the elements of
QL(R") = CH(R", R) 0z O"(R")
and similarly for C".

We have a grading of Q*(R™) given by
n
Q*(Rn) _ @ QP(R”)
p=0
where QP(R"™) consists of the differential forms of degree p or p-forms.

Hence a p-form has an expression

Z fil ,,,,, ip dxil A dl‘h JARERIAN d.?fip

which we note as

Zf;dx; where [Z{il,...,in}, i < - <ip.
I
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Assume the coefficients of differential forms are of class C¥, k > 1. The exterior differential
d is the operator

d: QR(R") — QP (R")
given by:

= O

(i) On O-forms f (functions), df = dx;.

(ii) On p-forms w = Zf[d:r[, dw = de[ Ndzy.

The wedge product A of two forms is defined by: if w = Y, frdzr and n = Y ; day
then

wAn= Zfng dry Ndxy
IJ

in this order.
As exercises, show that if w is a p-form and 7 is a ¢-form then:
(i) wAn=(-1)PnAw.
(i) dwAn) =dwAn+ (—1)Pw Adn.
(iii) d(dw) = 0, that is, d* = 0.

Suppose now we have a C* map f : R™ — R". The pull-back of a p-form on R"™ by
f is a p-form on R™ defined by

(i) For functions (0-forms) g, f*(g) =go f.

(ii) For p-forms w = > grdar, f*(w) =Y (gr0 f) dfr.

I I

(iii) d commutes with f*, that is, d(f*w) = f*(dw) (exercise).

A form wu is closed if du = 0 and exact if u = dv for some form v.

Finally, a cohomological complex K* = € qez K? is a collection of modules over a ring,
endowed with differentials, that is, linear maps d9 : K9 — K91 satisfying d9t! o d? = 0.
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The associated cocycle, coboundary and cohomology modules are defined respectively
by
Z9(K*®) = kerd?, Zi(K*) C K1
BY(K®*) =Imdi !, Bi(K®*) C Z9(K*) C K1
HI(K®) = Z9(K*)/BY(K*)
Let A%(M) be the C-algebra C*(M, C) and AP(M) the A°(M)-module of C* complex p-
forms on M. If M is a complex manifold, the De Rham complex of M is the cohomological

M) =P AL (M

q>0

complex

with differential d, the exterior derivative. We denote its cohomology groups by
HY (M, R) = Z9(M,R)/BY(M,R).
A C®* p-form w on a complex manifold M is expressed, in local coordinates, as a
sum of terms of the types frdxr, gsdy; and hgd(z,y)k, where dey = dx;, A dzi, A
< Ndwg,, dyy = dyj, ANdyj, Ao+ Ady;,, d(x,y)k s a product of p-forms of the types
dxm, dy, and fr, gj, hx are complex valued functions. Now, dx; = (1/2)(dz; + dz;) and
dy; = (1/21)(dz; — dz;). Substituting in the terms whose sum is w, we deduce that a p-form

on M can be written as
= Kir ez A Adzig AdZy A N dZ

which we abbreviate as w = Y ky jdz; A dZ;. We say that each term of this sum is a
p-form of type (r, s), r+s = p. The fact that a form is of type (r, s) doesn’t depend on the
coordinate system since TMC€ = T'M & T" M (exercise). Besides, a p-form w is expressed

in a unique way as a sum
w = wPO 41 oy ,0p) (33)

where w(™) is of type (r,s).

The decomposition (33) induces a decomposition
A(M) = APOY(M) @ AP (M) @ - AP (M). (34)

The exterior differential d complexifies and gives d : AP(M) — APT(M), obeying the
usual properties. Now, given f € A%(M) locally we have

df = Z d—i—z dzl
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Define
n n
. af =, of _
i=1 i=1
df and 9f do not depend on the coordinate system.
Given w(™s) = Skiy irdtrengs @iy N - Ndzi, NdzZj N --- NdZj, put
0w =" 0kiy iy grgs Nz A Ndzig NdZ A N dZ,
a form of type (r +1,s) and
5&)(7"5) = ng’il,m,ir,jhm«,js Ndzyy N+ Ndz;, N d2j1 JARERIAN deS,
of type (r,s+ 1). This gives
dw™) = guw™®) 4 9w,
As d doesn’t depend on the local coordinate system, the same holds for @ and 9. For an

arbitrary p-form w = Y w9,
r+5=p

ow = Z dw™ and dw = Z w9,

r+S$=p T+s=p
We have d = § + 0 and
(WP An) = OwP An+ (—1)PwP A On,

O(wP A m)

OwP A1+ (=1)PwP A 1.

Besides,

90w 1+ 90w™) 1 90w + 99w = ddw™) = 0.

By comparing the types of forms appearing in this equality we get

90 =0, 00+90 = 0, 99 = 0.

,,,,, 'p
are holomorphic functions. In this case

50.) = ngilw.,ip AN dZil JANCREWAN dZ,jp = 0.
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Reciprocally dw®0? = 0 implies that the coefficients of w are holomorphic functions.
Hence, for holomorphic forms we have dw = dw.

Lastly, a real manifold M is orientable in case it admits an atlas with all transition
maps 4,900@51 with positive jacobian determinant. Suppose M is oriented by such an atlas.
If u(z) = g(z1,...,xm)dx1 A Adxy, is a continuous m-form on M, where m = dimg M

and with compact support in a coordinate system, then we define

/u=/ gdxy...dxy,.
M m

This is independent of the coordinate system (orientability). If v has compact support, we
extend this definition of [}, u by means of a partition of unity. A manifold is orientable if,
and only if, it admits a nowhere vanishing continuous m-form (exercise).

Now, if K C M is a compact set with piecewise C' boundary 9K, it’s possible to give

an orientation to 9K in such a way that for any differential form of class C! and of degree

/ u:/ du.
oK K

Also, the orientation of a complex manifold of complex dimension n is determined by

m — 1 we have

This is Stokes formula.

its volume form, which locally reads:

N
dey Ndyy A - Ndxp ANdy, = (%) dzy Ndzy N -+ Ndzp N\ dzy,.

3.3.1. Remarks on Poincaré duality

We recall very briefly Poincaré’s duality [5].

If M is a compact complex manifold of dimension n let us denote by Hy (M,Z) and
H{(M,Z) the ¢-th singular homology group and the g-th singular cohomology group of
M with integer coefficients, respectively (refer to [10] for the singular theory). Poincaré’s

duality theorem states that
HI(M,Z) = Hj, ,(M,Z). (35)

In general, this isomorphism no longer exists if M is not compact. In this case we must
bring in the singular cohomology with compact support, defined as follows: the compact
subsets of M are partially ordered by inclusion (K < K’ if and only if K C K’). The
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relative cohomology groups HZ(M, M \ K) make up an inductive system indexed by the
compact subsets of M, with HI(M, M\ K) — H(M, M\ K') induced by inclusion. Take
the direct limit and define

HOOM,Z) = —0 g, M\ K). (36)

K compact

If M is compact we have HL.(M,Z) = H?(M,Z). With this procedure Poincaré’s duality
now reads:

HE(M,Z) = H3, ,(M,Z). (37)
Tensorizing by C and invoking the Universal Coefficient theorem we obtain
H§.(M,C) = Hj, ,(M,C). (38)

On the other hand we have two de Rham cohomologies, the one with closed forms,
H}p(M,C), and the one with closed forms with compact support, H (M, C). They
obviously coincide in case M is compact. Under certain conditions on M (existence of a

good cover) both cohomologies are finite dimensional and Poincaré’s duality reads:

~ 2n— *
Hp(M,C) = (HZ5H(M,C))" (39)
This result is obtained by showing that the bilinear map
HYp(M,C) x HBH(M,C) —  C
(40)
(w,n) - wAn
M
is non-degenerate.
We have the de Rham theorem ([5]-théoréme 17°):
HZ™9(M,C) = H},(M,C), (41)
from which it follows that, since the vector space Hf%}q(M ,C) is finite dimensional,
H?=9(M,C) = H’ (M,C), (42)

where this isomorphism is not natural since choices of bases are involved. From (38) we
get
Hy(M,C) = HZp (M, C) = Hpp (M, C) (43)

where the second isomorphism occurs when M is compact.
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3.4. Vector bundles

In what follows, by a topological space we mean a connected Hausdorff space with
countable basis.

Definition 25. Let X be a topological space. A real vector bundle of rank n over X is a

topological space E equiped with a continuous projection E I x satisfying:

(i) 7= Y(z) := E, (the fiber of E over x € X ) is a real vector space of dimension n,
VrelX.

(i) There exist an open covering of X, X = |J Ua, and homeomorphisms
acA

O : 1 (Uy) — Uy x R®
such thatVa € A, if x € U, then
Onz: By — {z} xR"=R" (44)
is an isomorphism of real vector spaces.

E is called the total space of the bundle, X is called the base and O, are the local
trivializations of E.

Definition 26. A section of E s X is a continuous map s : X — E such that
(mos)(z)=2 VYreX (45)

that is, s(z) € Ey.

Example 27. The trivial bundle over X, R", is defined by

R"” = X xR"
b
X

where m(z,v) = . If f: X <, R™, then its graph s(z) = (z, f(z)) is a section of R".

0
Conversely, a section s : X — R” defines a function f : X R,

Example 28. TM e TM* are vector bundles. Sections of these bundles are vector fields
and differential 1-forms, respectively.
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If s: X — E is a section of E, then

(Oaosly,) : Us — Uy x R
T +—= Ou(s(z)) = (z,54())

is the graph of S, : U, — R™. Hence, a section is locally a function with values in R"™.

Let E 5 X be a vector bundle of rank n, {Us} a trivializing open cover, and {©4}
local trivilizations of E. Given x € U,, the map O, : F; — R™ is the restriction to E, of
the map 0, : 7 1(U,) — R™. Denoting by U,s = U, N Ug, we define

Oup : Uag —> GL(n,R) by Oup(z) = OarOp,. (46)
Diagramatically:

0
Uss xR" €2 7 (Uas) 23 Ups x R

(20) e (2.0a5()).

The ©, g are continuous and satisfy the cocycle relation (product in GL(n,R))
00505010 = I in Uppy and Onp = O (47)

The ©,p are called the transition functions of E. Remark that, if s is a section of E
then
O.553 = Sa- (48)

Definition 29. Let E and F be vector bundles over X. A morphism ¢ : E — F is a

continuous map such that the diagram

E 2 F
mE | I 7F
x M X

commutes and |, : By — F; is a linear map Vx € X. If p is a bijection and o lisa

morphism, then ¢ is called an isomorphism.

Let’s consider this definition in more detail. Suppose {U,} is an open covering which
trivializes both E and F. Let {©,} and {74} be the trivializations of E and F', respectively.
If ¢ is a morphism from F to F, then ¢ induces ¢, : Uy X R" — U, X R™ given by
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$a 1y Pa = TaopoOL.

Uy xR™ &2 22w,

Now, ¢, is of the form ¢, (z,v) = (x,aq(x)v). Hence aq : Uy < L(R™ R™) satisfies
Naps = @a©Oap VYV a,p. (49)
Indeed, by the diagram
Ugp X R® & 75 (Uap) O Ugp X R®

g Lo 1 ¢a

Usp xR <2 7olUaps) 2% Uys xR

we get
0p(z,v) = NgonNg" 0 pa 004005 (x,0)

= Naong' opp(r,0) = Pa©B4005 (2,0)

= (z,ma8(®)ag(x)v) = (z,aq(r)Oqs(x)v).

0
Conversely, a family of maps aq : Uy <, L(R™ R™) determines a morphism from F
to F provided
Naplg = 6aOap in Usg , Vo, B.

Remark that FE is isomorphic to the trivial bundle R™ if, and only if, there exist
0
aq 2 Uy S GL(n,R) such that ag = anOap in Uag, Vo, §.

Exercise 11. This exercise gives an alternative description of vector bundles. Let {U,}
be an open cover of X. Suppose we are given a family of continuous functions, defined in
UaB, ©ap : Usp = GL(n,R) and satisfying 0,805,050 = I in Uygy and Oy p = @E(ly

in Uypg (remark that ©4q = I). Set F = [] U, x R” (disjoint union with the obviuos
acA
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topology) and define the following equivalence relation in F:
(a,z,u) ~ (B,y,v) = =y, Oup(z)v=u and Uyp # 0.

Show that the quotient F/ ~ has the structure of a real vector bundle of rank n over X,

unique up to isomorphism, whose transition functions are the ©, 3. N

Usually bundles are constructed from a family of transition functions, as in the above

exercise.
In all that was done above, if we change R by C we obtain the notion of a complex

vector bundle. Besides, if X is a complex manifold and the trivializations are of class C*°

or are holomorphic, then we will have C'*° or holomorphic vector bundles.

3.4.1. Tensor products

If E and E’ are vector bundles over X, of ranks n and m respectively, the tensor
product E ® E’ is the bundle whose fiber over z € X is E, ® E/. The transition functions
of E® E' are

Oap(r) ® O, 4(x) : R" @ R™ — R" @ R™.

In case E and E’ have rank 1, then these transition cocycles are simply the product

CRVIC S

3.4.2. Subbundles, quotients and determinants

If E-Zs X is a vector bundle, a subbundle consists of a subset F' C F such that the
projection 7 and the local trivializations of E endow F' with a real vector bundle structure.
Given a subbundle F of E, the fibers F, are subspaces of F,, and the quotient bundle E/F
is obtained by taking the quotients E,/F,. More precisely, let {U,} be a trivializing open
cover of E. We have a diagram

e
Uy xB" 2 771U, 23 wosxRe
T T T
] —1

Usp X R™ = 77} (Uap) Joy Upp x R™,
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where the vertical arrows are inclusions. Hence we have (z,v) — (z,04g(x)v) and
(z,v) — (z,map(x)v). Now, V v € R™ these two maps coincide and so
Oap(z)jrm = Nag(x). We conclude that O, s has the expression

o naﬁ(x) paﬁ(x)
Oap(x) = ( 0 (aﬂ(z))

Consider a short exact sequence
0—R™ 5L R" — R"/R™ - 0

(T linear). This allows us to define the quotient bundle E/F in the following manner: a
vector w € R"™ can be written as w = v 4+ u, v € R™ u € R" ™. Then
O () (v,u) = (M0 g(T)V + pa p(@)u, (g(x)u) and, as 74 8(x)v + pa g(x)u € R™, the class
of ©44(x)(v,u) in the quotient R™/R™ equals the class of {,s(z)u. The vector bundle
E/F is defined by the transition cocycles (q 3.

The determinant bundle of E is the bundle det E = A" E, whose fiber is A" E,. Its

transition cocycles are det ©, g, from which it follows
det©,p5 = detn, g ®det(yg,

and we conclude
det F = det F @ det E/F.

Remark that we’ve obtained an isomorphism since in the above argument a choice of bases

of the spaces involved is implicit.

f

Exercise 12. If 0 — F — F i> G — 0 is an exact sequence of vector bundles over
X, that is, 0 — F, — FE, — G, — 0 is exact Vx € X, then f identifies F' with a

subbundle of E and ¢ induces an isomorphism between E/F and G.

3.4.3. The Whitney sum

If E and E’ are vector bundles over X of ranks n and m respectively, their direct sum
E®F' is the bundle over X whose fiber over each z € X is E,@ E’. Local trivializations 0,
and ©/, of F and E’ (relative to the same open cover {U,} of X) induce local trivializations
of E® E' by

O, ® O, : mHU,) = Uy x R* @ R™,
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Hence, the transition cocycles of E @ E’ are given by

4 5(x) 0

(Bas @ Ol5)(x) =( e
af

) R"@eR™ — R" @ R™.

3.4.4. The dual bundle

Recall that a linear map f : V — W induces a linear map f7 : W* — V* defined by

ffows — v
a += fMla): V— R

ve— (o f)(v),

whose matrix is the transpose of the matrix representing f. If ©, : 77 1(U,) — Uy x R?

is a local trivialization of F, then

_1.

O N U,) = Uy x RY

is, by definition, a local trivialization of the dual bundle E*. The transition cocycles are
-1 -1 -1 N A -1
©h7'ef = (ehH7'el) = (.e;h") = (05"

Once again, if F has rank 1, then the transition cocycles of E* are @;}3.

3.4.5. Pull-back

Consider the diagram

E
I
y L x,

where f is continuous. f induces a bundle over Y, f~'E, called the pull-back of E via f.
As a set, f~1E is the fibered product Y xx E C Y x FE defined by

fE = {(y.e): fly) =n(e)}-

This is the only maximal subset of Y x E such that the following diagram commutes

P2

YxE o f'E 2 g
P I
y L x
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If E is trivial, E = X x C", then

JTE = {(y,(zv) rx = fy)} = {(y.v) :y €Y, veC"} = ¥ xC"
Hence, by using the trivializations of E we deduce that the fiber of f~1E over y is isomorp-
hic to Ey(,). Besides, if we have a composition Z Sy L X, then (fog) 'E=g 1 f1E.

Exercise 13. Determine the transition functions of f~1F.

3.5. Some examples of holomorphic vector bundles
3.5.1. [V]

Let M be a compact complex manifold and V' C M an analytic set of codimension 1.
Cover M by open sets U; such that V is defined in U; by f;~1(0) (f; : Ui = C, holomorphic
and reduced). In U;; we have the relation f; = ¢;; f;, where ;; is holomorphic and vanishes
nowhere. The rank 1 vector bundle [V] is defined by the transition functions ¢;; = f;/f;
(recall Exercise 6). Remark that [V] admits a holomorphic section sy defined by V. In

fact, on the trivializing open set U; we have

UZ' x C L [V]wl

1\ '
U;

and the section sy : U; — [V]jp, is defined by the graph of the function
fi, SV, (2) = w;l(z,fi(z)). Moreover, the zeros of sy define V. Suppose now that, in

Ui, V is also defined by ¢g; = 0. Then f;/g; does not vanish at any point in U; and

5 5
i fi 9 95
Bij = = = T% = 05,
g ik T fi
Gi Gi
that is (see (49)),
fi [
Lig. = 12
gi " ’ 95

and we conclude that the bundle defined by the (;;’s is isomorphic to the bundle defined
by the 8i;’s. Hence, the isomorphism class of the bundle [V] is associated to V.
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3.5.2. The tautological bundle O*

Consider the trivial bundle P x C*! = PZ. The tautological or universal bundle is
the rank 1 subbundle consisting of the pairs ([w], z) € P& x C"! such that z belongs to
the straight line defined by [w] (hence the reason for the term tautological):

O0* = {([w],2) : 3t € C such that z = tw}.
Recalling the definition of P¢ in (3.2.1) we have, in the open set Uj,

|*Uz = {((z0: " :2zn),t(20,...,2n)) ; t€C}.

The transition cocycles are defined by
O; o,
UjxC «= O —  UjxC

() F——= (2,04([2])).

and, in Uij7

and hence,

3.5.3. The hyperplane bundle O

Let H be a hyperplane in P%, that is, H = {P(z) = 0}, where P : C""! — C is
a polynomial of degree 1, P(0) = 0. By a linear change of coordinates we may assume
H={z=0}InU,i#0, H is defined by f; = z0/z; = 0. The rank 1 bundle O, which
represents the isomorphism class of the bundles of the form [H] (see (3.5.1)), is defined by

the transition functions

20

a7
A
J

Zj
Exercise 14. Show that any two hyperplanes define isomorphic bundles.
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Notice that, by 3.4.4, O is the dual of O* since ¢;; = G)z-_jl. Now, given d € Z the
bundle O(d) is defined by

0% =0@---00, if d >0,

d times

0(d)
0% l= O*g...0", ifd<O0.
————

—d times
3.5.4. The canonical bundle K,

If M is a complex manifold, the canonical bundle Ky of M is defined by
Ky = (det T"M)". In case M = PZ, since the transition cocycles of det TP are

ey n+1
det©;; = (*1)“7 (J) )
24

we have
(*l)l det@ij = (J> (*1)]
Zi
and, by (49), det T"P¢ is isomorphic to the bundle whose transition cocycles are (z;/ z)" T,

that is, det T'Pg = O(n + 1). Hence,

Kpp = O0(n+1)"=0(-n—1).

3.6. The canonical bundle Ky
Suppose V <— M is a compact submanifold of the complex manifold M. The normal
bundle Ny of V in M is, by definition, the quotient

T'My
v

v o=
Hence, we have the short exact sequence
0— TV —T My — Ny —0

and, by 3.4.2 , (det T'M))y = det T'V ® det Ny.. But these are rank 1 vector bundles and
therefore
Ky = KM\V ® det Ny .
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Suppose now that V' has codimension 1. Then this last formula reads Ky = K My, ® Ny.
Take a trivializing open cover {U;} common to all these bundles. Then, in U;, V is defined
by fi = 0 (since it’s a submanifold of dimension n — 1) and [V] is determined by the
transition cocycles @;; = fi/f; (see (3.5.1)).

Now, in Uy, fi = ¢i;f;, which gives df; = fj dyi; + ¢ij df; and, along V', df; = ¢;;df;.
On the other hand, in U; NV, T'V is defined as the kernel of df; and hence df; defines a
nowhere vanishing holomorphic section of the dual bundle Ny;, since V' is a submanifold.

Let ¢ : 7Y (U; NV) — U; NV x C be a local trivialization of Ny, and put S; = (idf;.
Then, g;lsi = <pijCJfISj, that is, S; = Cilegoiij = (35915, and by (48) we have that
the df;’s define a global nowhere vanishing holomorphic section of N}, ® [V}‘V. This says
that Ny, ® [V]}y is isomorphic to the trivial bundle and hence

Ny = [V]W
From this we deduce the adjunction formula
Ky = KM\V ® [th (50)

Exercise 15. Let E be a holomorphic vector bundle of rank n over M. If E admits n
linearly independent holomorphic sections, then E is holomorphically isomorphic to the
trivial bundle C".

4. Currents

Let Aﬁoﬁu(]R") = AL(R"™) be the space of C™ {-forms on R” with compact support. The
topological dual of A¢~9(R™) is the space of currents of degree q, denoted D(R™). This

means that DI(R™) is the space of continuous linear forms T on A¢~4(R™).
For a good account on currents refer to [4].

Remark 30. The topological background necessary to treat currents is not elementary
and we will only say that the topology involved is based on seminorms. The topology in
AL J(R™) doesn’t make it a complete space.

We begin by giving some examples.

Example 31. Let L] (R") be the space of q-forms u(z) =, us(z)dz; whose coefficients

loc
ur(x) are locally integrable. Then

T0) = [ uno,  oedrm) Gy
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is the degree q current associated to w. The assignment uw+— T, is injective (compare with

Proposition 13) and we will identify the current T,, with the form wu.

Example 32. Let T be a piecewise smooth oriented (n— q)-chain in R™. Note that T' could
be a closed oriented (n — q)-submanifold, with boundary OT'. Then

Te@)= [0, ocATIR) (52)
r
is the current of integration over I.

This illustrates the concept of support: the support of a current T, supp(T), is the
smallest closed set S such that T(¢) = 0 for all p € Az”I(R™\ S). In the above case
supp(Tr) =T.

The exterior derivative induces an operator
d : DI(R") — DITLRM)
which is, by definition:
(dT)(¢) = (-1)T"'T(de), ¢ € AL HR") (53)

and it satisfies d> = 0 (exercise). Compare with (20). This is the beginning of the residue
theory.
A current is closed in case dT" = 0.

In the case of Example 31,

(dT,)(6) = (~1)7! /R undo=- [

Rn

duno)+ [ duno=Tale) (1
—— Rn

In the case of Example 32, by Stokes (with a proper choice of orientations),
(@T)(0) = (=) [do = (<7 [ 6= (1) (o), (55)

Let w € LY

loc

(R™) be C*° outside a closed set S. Suppose that dw on R™\ S extends to

a locally integrable form on R"™.

Definition 33. The residue is the current defined by

Res(w) = dT,, — Ty- (56)
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We have supp Res(w) C S. This is known as the localization principle.
In C, consider the Cauchy kernel
1 dz
S22z
1
Exercise 16. Show that the function z+— — is locally integrable.
z

The following is a very useful result (see [6]):

Proposition 34. Let f: C — C be a C*° function and let v be a simple closed curve in
C whose interior is the open set D. Then, for w € D

flw) = 1 f(2) dZJFQLWi//%(Z)dzAd?
5

2mi zZ—w Z—w
v

Remark that, in case f is holomorphic this reduces to Cauchy’s integral formula since

of
Returning to the Cauchy kernel we have k € Ll(iéo) (C) and is O on C\{0},dr = 9k =0

on C\ {0} and by Proposition 34, for ¢ € C°(C)

6(0) = L/Rz 09(z) dz/\dZ.

2 0z z

Hence Ty, = 0 and dT}, = 9T}. But this reads (0T} )(¢) = $(0) = Jo(¢) and
Res(k) = do

the Dirac function.

This can be generalized to C* = R?" by means of the Bochner-Martinelli kernel. We
start with a kernel in C™ x C", which is the complex analogue of the Newtonian potential
in R” x R™:

filog|wfz|2, forn=1
27
G(w, z) =
(n—2)!
2
In what follows, w will denote the variable of integration, z will be a parameter and we

let

lw—z|*72", forn > 2.

27"
Qop_1 = 1) and A=|w-— z|2.
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Notice that, since the area of the sphere 5122"_1 C C" of radius R is aon_1 R, agp_y is
just the area of the unit sphere S%"*I.

The Bochner-Martinelli kernel (for functions) is the double form
K(w,z) = — % 0,G(w, 2)

of type (n,n — 1) in w and type (0,0) in z.
K (w, z) is represented by the form

(n—1)! noo )
K= Gy — 7 2 () dwi A | N\ doy nda

Set n =1 to get the Cauchy kernel
1 dw

K= — .
2miw — z

We have 0, K (w,z) = 0 on C" x C"\ {w = z}. K normalizes the area of spheres, more

precisely: let B(z) denote the euclidean ball centered at z and with radius e. Then,
K(w,z)=1
8B (2)
for all z € C™ and for all € > 0.
Finally we have the Bochner-Martinelli integral formula

Theorem 35. Let U C C" be a limited domain whose boundary OU is a smooth manifold.

Suppose f: U — C is continuous and f is holomorphic in U. Then,

f(z), forzeU
[ ) K w2 -
ou 0, for z ¢ U.

Proceeding verbatim as we did in the case of the Cauchy kernel in C, we have that

81[} Tk = 52

and
Res(K) = 6,.
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A current T' € DI(R"™) may be expressed as a differential form whose coefficients T are

distributions. Such a current can be written in a unique way as
T=> Trdz (57)
[=q

where 77 is a current of degree 0. This is done by introducing the wedge product. If
T € DY(R") and w € AZL(R™) then T'Aw € DI (R") is defined by

(Trw)n) =T(wAn),  neATT(R"). (58)
It follows that (exercise)

AT Aw)=dT ANw+ (=1)IT A dw.

The decomposition (57) is obtained in the following way:

Let I = (i1,...,4q), i1 < - -+ < ig, let (I,CI) be the permutation (1,...,n)+— (I,CI)
and o7 = %1 be the sign of this permutation. Given ¢ € D(R") identify it with the n-form
¢dry A--- Ndx, € AZ(R™) and put

T](¢) = T](¢ dri AN+ A dl’n) =07 T((z)dajcl)_

Doing this for all I such that |I| = g we obtain the decomposition (57). In particular, reca-
lling Definition 16, if the 77 are distributions of order 0 then they define Radon measures
and in this case the current 7" is identified with a differential form whose coefficients are
measures.

If M is a complex manifold, the currents D®P) (M) of type (p,p) are the continuous
linear forms on A7 " P(M). A (p,p)-current is real if T = T, that is, T(¢) = T() for
all ¢ € A¢"P""P(M). A real current is positive if

PeDRTAT) >0, ne APOM). (59)

The positivity of T implies that it has order 0 in the sense of distributions and hence
defines a positive measure, by Definition 18 and Theorem 19.
An important example is given by Example 32: if Z C M is a codimension p analytic

subvariety and Z,.4 is the set of smooth points of Z, then the map

Ty(¢) = / 6. deArrnr(a)

Zreg
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defines a closed positive current, which is the fundamental class of Z.

A C* (1,1)-form

i
w = §Zhijdzi/\d2j
i,j

is real if h;; = hj;, positive if the matrix h;; is positive definite and closed when the
associated hermitian metric ds?> = Zl J hijdz;dz; is Kéhler.

A real function ¢ € L} (M) is plurisubharmonic in case i09¢ is a positive (1, 1)-current

(derivatives are in the sense of distributional derivatives). There is the 99-Poincaré lemma:

Let T be a closed, positive (1,1)-current. Then, locally,
T = i900¢

for a real plurisubharmonic function ¢, uniquely determined up to addition of the real part

of a holomorphic function.

5. An application involving holomorphic foliations

5.1. One-dimensional foliations on P¢

The content of this section stems from M. Brunella’s article [1]. For a broad account
on holomorphic foliations see [3].

Let us now consider foliations of dimension one on complex projective spaces. Recall
the hyperplane bundle O. A computation shows that any bundle map O(m) — TP¢ is
identically zero for m > 2 and hence one-dimensional (singular) holomorphic foliations F

of P¢ are given by morphisms
U:0(1-d) — TP¢

where d > O(here, TP¢ is the holomorphic tangent bundle of P¢). The integer d is called
the degree of F. Such a foliation is defined locally by a polynomial vector field whose
expression is as follows: in affine coordinates (z1,...,2,) F is given by the orbits of a
polynomial vector field of degree d + 1 or d, of the following form:

E=gR+) Y, (60)
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o9
where R = ) z;—— is the radial vector field, g € C[z1, ..., z,] is homogeneous of degree d
i=1 Zi
n 0
and Y; = Zl Y;; 7 with Yj; € Clz1,. .., 2,]) homogeneous of degree j. £ is a rational vector
i=

field on IP% with a pole of order d — 1 along the hyperplane at infinity ]P’EflA Therefore, in
order to cancel the pole we tensorize TPP¢ by O(d — 1) and obtain a holomorphic section
(which we still call £) & : P¢ — TP¢ ® O(d — 1). If g # 0 then, the hyperplane at infinity
IF’%71 is not F-invariant and {z € IP’%71 : g(z) = 0} is precisely the variety of tangencies of
the leaves of F with ngl (this explains why d is called the degree of F: d is the degree of
the variety of tangencies of F with a generic hyperplane), whereas in case g = 0 and Yy is
not of the form h R, with A homogeneous of degree d — 1, the hyperplane at infinity ]P’ZC‘*1
is F-invariant and the restriction .}"]P,r,c,,fl gives a foliation of ]P’%f1 of degree d. Remark that
the representation £ = g R+ E?:o Y; is unique up to multiplication by a non-zero complex

number since we are only interested in the direction defined by &.

The line bundle O(1 — d) is called the tangent bundle of F and noted T'F. Its dual
O(d — 1) is the cotangent bundle T*F.

The singular set of F, S(F), is the set of zeros of the vector field £ of (60). We will
assume that S(F) consists only of isolated points. Since P{ is compact this implies that
S(F) is a finite set of points. Moreover we will suppose that all the singularities of F are
hyperbolic. This means the following:

Definition 36. Let X be a holomorphic vector field defined on a neighborhood of a point
p € C". Suppose X(p) = 0 and the derivative DX (p) satisfies det DX (p) # 0. Let
A1, ..., An be the eigenvalues of DX (p). p is a hyperbolic singularity if \; & R.\; for
alli #j.

These singularities have interesting properties, like the one in the proposition below,
but first we need the concept of invariant branch. If X is a holomorphic vector field defined
around a point p with X (p) = 0, an invariant branch (separatriz) for X at p is a non-
constant curve I' passing through p such that, for each ¢ € I'\ {p} we have X (¢) € T,I'(T,I’
denotes the holomorphic tangent bundle of T).

Proposition 37. Let X and p be as above. Suppose p is a hyperbolic singularity of X
and let A1, ..., \n be the eigenvalues of DX (p). Then X has exactly n invariant branches
through p, say I'1, ..., Ty, such that:

(i) T; is smooth at p, 1 <i<mn.
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(it) For each eigendirection vj of DX (p), there is exactly one i € {1,...,n} such that

T; is tangent to v; at p.
(ii1) If T is an invariant branch of X at p then, as germs at p, T =T'; for some i.

That is, through a hyperbolic singularity pass n smooth separatrices. For a proof see
[8]. We remark that this proposition holds with the weaker hypothesis A; ¢ RT.\; for all
i#7j.

We saw in (59) the concept of positive current. Now, suppose we have a one-dimensional
foliation F on IP¢ and let T be a closed positive current of type (1,1) defined on P¢\ S(F).
T is said to be invariant by F if T'(w) = 0 for every 2-form  which vanishes on the leaves
of F, that is to say that the value T'(zw) depends only on the restriction of @ to the leaves

of F. More explicitly, on P¢ \ S(F) we may choose coordinates (z1,...,2,) in such a way

that F is induced by the vector field 3i Put
Z1

aj:dzl/\---/\(jz\j/\~~~/\dzn, 1<j<n.

In these coordinates T' can be written locally as

n
T = Z hjkiozj N Qg
k=1
where hjj, are complex measures. Since T is invariant by F we have TAd; =T Adz; =0
for all j # 1, which gives hj; = 0 whenever (j, k) # (1,1), so that

T =hi1iog A ag.

Since dT' = 0 we have that the distributional derivatives of hi; with respect to z; and z;
are zero. Hence, T' does not depend on z; and can be projected to give a positive measure
on the local transversal section {z; = 0}. Repeating this procedure on each foliated chart
on P¢ \ S(F) we associate to T a measure which is transverse to F and invariant by the
holonomy.

Reciprocally, given such a measure it is possible to obtain on Pg \ S(F) a closed
positive current 7" which is invariant by F. This is a consequence of a nontrivial result by
D. Sullivan [11] (Caution: this is not an easy reading paper) which states that there is a
natural bijective correspondence between invariant measures for ]‘—‘]pg\s( 7) and invariant
positive currents of type (1,1).

Now S(F) is, by hypothesis, a finite set of points. In this case the current T, defined
on P¢ \ S(F) admits a unique extension to all of P¢, which we still denote by T
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5.2. The residue

Let p € S(F) and U be an open neighborhood of p. The foliation F is defined in U by
a holomorphic vector field

0 s}
=Xt X
v 1821 + + oz,

having p as the only zero in U. Choose a holomorphic n-form € on U without zeros, for
instance Q = dz; A -+ - Adz, and contract Q by v that is, look at (n — 1)-form L,, which

is given by
n

L= (-1 Xidzy A dz- e Adi, (61)
i=1
This (n —1)-form has a geometric interpretation: on U \ {p} the kernel of i, at each
point, is a subspace of dimension n — 1 which is a complement of the line generated by v.
Hence L, spans the determinant of the conormal bundle of F, det N*F.

Consider now the C* (1,0)-form 8 on U \ {p} defined by

n

B = SWA > Xidz (62)
SXG2 | =t

i=1

n
0X;
where div denotes the divergence of the vector field v, div(v) = Z 3 l The £ satisfies
i=1

Zi
(exercise)

dl,Q=p38AN1,Q. (63)
Remark that f.v = div(v) = trDv (the trace of the derivative of v). This tells us that £,
when restricted to the leaves of F, induces a section of the cotangent bundle T*F which,
since F has dimension one, is the same as the canonical bundle K F. It follows from this
that 87 is holomorphic and hence holomorphically extendable at p (a fact we will not
prove).

Let ¢ be a test function on U, which is zero on a neighborhood of p and equal to 1
outside a compact subset of U. The C*° 2-form dy A § is defined in U and has compact
support. Define

Res(F,T,p) = 5=T(dp A f). (64)
This is an index, or residue, associated to ﬁ‘ 7 at p relative to the current T'. It is well-
defined but we will simply assume this as a fact. The main property of this residue is given

in the following
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Proposition 38. Let F be a holomorphic foliation of dimension one on P% with finite
singular set and let T be a closed positive current of bidimension (1,1) on P¢ which is

invariant by F. Then

c1(det N*F).[T] = > Res(F,T,p). (65)
pES(F)Nsupp(T)

Proposition 38 is a result of Poincaré-Hopf type. The right hand side of equation (65) is
a sum of local indices of the current associated to singular points of the foliation, whereas
the left hand side is a number, of global character, associated to F and 7. The term
c1(det N*F) is the first Chern class of the line bundle det N*F and it is given by the trace
of a curvature matrix (note that the form 8 satisfies f.v = trDwv). It is represented by a
closed C* 2-form and so ci(det N*F) € H3,(P%,R). [T] € Ho(PE,R) is the homology
class of T" and

c1(det N*F).[T] = T(O)

where © is a convenient compactly supported closed 2-form representing c¢; (det N*F). The
proof is given in [1].
5.3. The theorem

We now bring in the hyperbolic singularities in order to explain a result of M. Brunella
[1]. We denote by Fol(d,n) the space of holomorphic foliations on P¢ of degree d. This
space lies inside a projective space since its points are represented by vector fields £ as in
(60), modulo multiplication by complex numbers, (the coefficients of the vector field are

homogeneous coordinates) hence it has a natural topology.

Theorem 39. Givenn > 2 and d > 2, there exists an open and dense subsetU C Fol(d,n)

such that any F € U has no invariant measure.

Let’s give a very rough idea of how this result is proven. The set Y C Fol(d,n) was

constructed in [8] and it has the following properties:
(i) if F € U then all singularities of F are hyperbolic.
(i) if F € U then no algebraic curve is invariant by F.
(iii) the set U is open and dense (even in the real analytic Zariski topology).

94



AN INTRODUCTION TO DISTRIBUTIONS AND CURRENTS

Now, for F € U Brunella shows that, assuming F admits an invariant closed positive
current T', we necessarily have Res(F,T,p) = 0 at all singularities of the foliation. This is
because there are no invariant algebraic curves so that the invariant branches through a
singularity do not fit into an invariant compact set (an algebraic curve). Hence the right
hand side of (65) vanishes, which gives ¢;(det N*F).[T] = 0. But we have the relation
(see [2])

det N*F = Kpp @ TF =0(-n - 1)@ O(1 —d) = O(-n — d). (66)
This equality means that ¢; (det N*F).[T] < 0 since T is positive. This contradiction shows

that that are no invariant closed positive currents, hence no invariant measures.

6. Exercises

Exercise 1.— Draw the graphs of the following functions:
fiR =R, f(t)=e VY ift >0, f(t) = 0 if t <0. Show that f € C®(R,R).

g:R=R gt)=ft+2)f(—t—-1).
¢

oo
h:R—=R,A(t) = % / g(s)ds where A = / g(s)ds.
—00 —00
Finally set ¢ : R™ — R, ¢(z) = h(—|z|).
Show that all these functions are C*°. Show that ¢ satisfies ¢(x) = 0 if |z| > 2,
¢(x) =11if |z| <1land 0 < ¢(x) <1 for all x € R"™.

Exercise 2.— (Bump functions). Given real numbers 0 < a < b, ¢ > 0 and p € R"
construct a function ¢qpep : R" — R of class C*° such that, ¢(z) = 0 for |z — p| > b,
¢(z) =¢ for |z —p| <aand 0 < ¢(x) < e for all z € R™.

Exercise 3.~ Find a subset of R"™ which is NOT contained in B!
Exercise 4.— Show the following properties of measures:
(i) If Ay, Ag,...,Ar is a finite collection of disjoint measurable sets then
k k
I (U Ai) = " u(A;). This is called finite additivity.
i=1 i=1
(ii) If A C B, A and B measurable, then pu(A) < p(B).

(i) If A; is measurable and A; C As C A3 C ---, then lim pu(4;) = p (U AL>
100

i=1
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(iv) If A; is measurable and A; D Ay D A3 D --- and if p(A;) < oo, then
lim p(A;) = p (m A)
1—00 i=1

Exercise 5.— Show that the following affirmatives are equivalent:

(i) L]?(t) €.

(ii) Ly (t) ={z €U : f(a) <t} €X.

(i) L7(t) ={z €U : fx) >t} € 2.

(iv) L3(t) ={z €U : f(z) <t} eX.

Hence we could have used any of these to define measurability of a function. Hint:

oo

{zeU: f(z)>t}:U{x€U:f(:c)Zt—Fl/n}.

n=1

Exercise 6.— If ¥ = B in R” then any continuous or lower semicontinuous or upper
semicontinuous function is measurable. Hint: f is lower semicontinuous if LJ? (t) is open

and upper semicontinuous if Ljf (t) is open.

Exercise 7.— Show that, if f and g are measurable, then so are the functions
x> af(z) +bg(z), a,b € C, z — f(z)g(z), z — |f(z)|, z — h(f(z)), where h : C — C
is Borel measurable; « — max{f(z), g(x)}.

Exercise 8.— Let A and B be subsets of R" and define
A+B={a+b:acAbe B}

Show that if A is closed and B is compact then A + B is closed. Give an example with A
and B closed and A + B not closed.

Exercise 9.—

(i) Show that T(¢) = ¢(*(0), ¢ € C°(R) is a distribution in D’'(R) of order < k.

(if) Show that 7" as in (i) is of order k in any neighborhood of 0. Hint: Consider

de(x) = 2¥p(x/€) where ¢ is a bump function equal to 1 around 0.

(iii) Show that the distribution given by S(¢) = 3_(—1)¥¢*) (k) is not of finite order.
0
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Exercise 10.— Show that the change from the basis {0/0x;,0/0y;} to the basis
{0/0z;,0/0%;} is given by the matrix

P = (1/2 1/2> with P71 <1 i).
—i/2 i/2 1 —i

Exercise 11.— This exercise gives an alternative description of vector bundles. Let

N

{Ua,} be an open cover of X. Suppose we are given a family of continuous functions,
defined in Uy, Oap : Uap — GL(n,R) and satisfying ©,303,0,4 = I in Uy, and

Oup = (—)B}1 in Uyp (remark that ©qq = I). Set F = J] Uy x R™ (disjoint union with
acA
the obviuos topology) and define the following equivalence relation in F:

(a,z,u) ~ (B,y,v) <= =y, Oup(x)v=u and Uyz # 0.

Show that the quotient F/ ~ has the structure of a real vector bundle of rank n over X,

unique up to isomorphism, whose transition functions are the ©, 3. N

Exercise 12.-If 0 — F i> RN G — 0 is an exact sequence of vector bundles
over X, that is, 0 — F, — F, — G, — 0 is exact Va € X, then f identifies F' with

a subbundle of E and ¢ induces an isomorphism between E/F and G.
Exercise 13.— Determine the transition functions of f~1E.
Exercise 14.— Show that any two hyperplanes define isomorphic bundles.

Exercise 15.— Let E be a holomorphic vector bundle of rank n over M. If E admits
n linearly independent holomorphic sections, then E is holomorphically isomorphic to the
trivial bundle C".

1
Exercise 16.— Show that the function z +— — is locally integrable.
z
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