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An Introduction to Distributions and Currents

An Introduction to Distributions and Currents

Márcio Gomes Soares

1. Introduction

These notes are intended as a somewhat vague and preliminary introduction to some

mathematical tools which have proven to be very useful in analysis, geometry and dyna-

mics. The concepts explored here are due to Laurent Schwarz and Georges de Rham. The

first is responsible for the concept of distribution and the latter made enormous contribu-

tions to topology and to this end he developed the concept of current, and both are in fact

very much related. These are subjects which permeate several areas of Mathematics and

we chose to give an idea of how this can be of use in the geometric theory of foliations.

What we present here is not at all a self contained text, on the contrary, we jump from

very elementary results to deep ones in the hope that the reader will grasp these ideas and

their usefulness.

2. Distributions

2.1. Test functions

2.1.1. The space D(U)

Throughout this section U ⊂ Rn will denote a nonempty open set and, unless otherwise

stated, |x| is the euclidean norm of x ∈ Rn, |x| =
√
x21 + · · ·+ x2n.

C∞
c (U) denotes the space of infinitely differentiable complex valued functions with

compact support defined in U , that is, functions ϕ : U −→ C with partial derivatives of

all orders and such that supp(ϕ) = {x ∈ U : ϕ(x) ̸= 0} is a compact set.

Notation: α = (α1, . . . , αn) ∈ (Z≥0)
n, |α| = α1 + · · ·+ αn,

∂αϕ =

(
∂

∂x1

)α1

· · ·
(

∂

∂xn

)αn

ϕ.

Definition 1. The space D(U) of test functions is C∞
c (U) together with the following

notion of convergence:
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a sequence ϕj ∈ C∞
c (U) converges in D(U) to the function ϕ ∈ C∞

c (U) if, and only

if, there is some fixed compact set K ⊂ U such that supp(ϕj −ϕ) ⊂ K for all indices

j and,

for all multi-indices α, ∂αϕj −→ ∂αϕ uniformly on K, that is,

sup
x∈K

|∂αϕj(x)− ∂αϕ(x)| → 0 as j → ∞.

Remark that D(U) is a C-vector space.

2.1.2. Bump functions

Prototypes of test functions are bump functions, which we present now.

Exercise 1. Draw the graphs of the following functions:

f : R → R, f(t) = e−1/t if t > 0, f(t) = 0 if t ≤ 0. Show that f ∈ C∞(R,R).

g : R → R, g(t) = f(t+ 2)f(−t− 1).

h : R → R, h(t) =
1

A

t∫

−∞

g(s) ds where A =

∞∫

−∞

g(s) ds.

Finally set ϕ : Rn → R, ϕ(x) = h(−|x|).

Show that all these functions are C∞. Show that ϕ satisfies ϕ(x) = 0 if |x| ≥ 2,

ϕ(x) = 1 if |x| ≤ 1 and 0 ≤ ϕ(x) ≤ 1 for all x ∈ Rn.

Exercise 2. (Bump functions). Given real numbers 0 < a < b, ε > 0 and p ∈ Rn construct

a function ϕa,b,ε,p : Rn → R of class C∞ such that, ϕ(x) = 0 for |x − p| ≥ b, ϕ(x) = ε for

|x− p| ≤ a and 0 ≤ ϕ(x) ≤ ε for all x ∈ Rn.

Using the functions ϕa,b,ε,p we can construct partitions of unity. We shall neither define

these objects nor prove their existence, but the interested reader should see G. de Rham’s

book [5]. However we give a proof of a fact which will be useful in the sequel.

Proposition 2. Let K be a compact subset of Rn and U be an open set containing K.

There exists a function ξ ∈ C∞
c (Rn) such that 0 ≤ ξ ≤ 1, supp(ξ) ⊂ U and ξ = 1 on an

open neighborhood of K.

Proof. For each point p ∈ K choose ρ(p) > 0 such that the ball B(p, 3ρ(p)) ⊂ U . Since

K is compact there are finitely many points p, say p1, . . . , pm, such that
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K ⊂
∪m

j=1B(pj , ρ(pj)). Take the functions φj = ϕρ(j),2ρ(j),1,pj , j = 1, . . . ,m, produced

in exercise 2 and define the functions

ν1 = φ1 ; νj+1 = φj+1

j∏
1

(1− φk) ; 1 ≤ j < m. (1)

Now, for j = 1 the equality
j∑
1

νk = 1−
j∏
1

(1− φk) (2)

is obvious. If (2) is true for j < m then, adding νj+1 to (2) and using (1) gives

j+1∑
1

νk =

j∑
1

νk + νj+1 = 1−
j∏
1

(1− φk) + φj+1

j∏
1

(1− φk) = 1−
j+1∏
1

(1− φk)

so that (2) holds for 1 ≤ j ≤ m. Put ξ =
∑m

1 νk. ξ is the required function.

�
The function ξ is called a cut-off function.

Corollary 3. Given a point p ∈ Rn and a neighborhood U of p, there exists a function

ξ ∈ C∞
c (Rn) such that

(i) ξ ≥ 0 and ξ(p) > 0.

(ii) supp(ξ) ⊂ U .

(iii)

∫

Rn

ξ(x) dx = 1.

2.2. A Glimpse on Integration

2.2.1. Measures

Lebesgue integration gives a much more comprehensive theory of distributions than

Riemann integration. However, in case the reader is not familiarized with Lebesgue’s

theory, we advise him (her) to go ahead thinking we are doing Riemann integration (si-

tuations at which this will not be possible will be hinted).

The characteristic function χA of a set A ⊂ Rn is defined by:

VI Escuela Doctoral Intercontinental de Matemáticas PUCP - UVA 49
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j and,
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χA(x) =



1, if x ∈ A

0, if x ̸∈ A.
(3)

Definition 4. Let S be a set. A collection Σ of subsets of S is called a sigma-algebra if

the following axioms hold:

A ∈ Σ =⇒ Ac = U \A ∈ Σ.

If A1, A2, . . . is a countable family of sets in Σ, then
∪∞

i=1Ai ∈ Σ.

S ∈ Σ.

Any family S of subsets of S can be extended to a sigma-algebra by taking the sigma-

algebra of all subsets of S. Now, consider all the sigma-algebras that contain the family

S, take their intersection and call it Σ (Exercise: Σ is a sigma-algebra.). This is called the

sigma-algebra generated by S.

An important example of a sigma-algebra is B, the Borel sigma-algebra, which is ge-

nerated by the open subsets of Rn or, alternatively, generated by the open balls of Rn.

Exercise 3.∗ Find a subset of Rn which is NOT contained in B !

Definition 5. A measure (positive) µ, defined on a sigma algebra Σ, is a function

µ : Σ −→ R≥0 ∪ {∞}

such that µ(∅) = 0 and which is countably additive, that is, if A1, A2, . . . is a sequence of

disjoint sets in Σ, then

µ

( ∞∪
i=1

Ai

)
=

∞∑
i=0

µ(Ai). (4)

A set A ∈ Σ is called measurable.

Exercise 4. Show the following properties of measures:

(i) If A1, A2, . . . , Ak is a finite collection of disjoint measurable sets then

µ

(
k∪

i=1
Ai

)
=

k∑
i=1

µ(Ai). This is called finite additivity.

(ii) If A ⊂ B, A and B measurable, then µ(A) ≤ µ(B).

(iii) If Ai is measurable and A1 ⊂ A2 ⊂ A3 ⊂ · · · , then ĺım
i→∞

µ(Ai) = µ

( ∞∪
i=1

Ai

)
.
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(iv) If Ai is measurable and A1 ⊃ A2 ⊃ A3 ⊃ · · · and if µ(A1) < ∞, then

ĺım
i→∞

µ(Ai) = µ

( ∞∩
i=1

Ai

)
.

A measure space is then a triple (S,Σ, µ) consisting of a set S, a sigma-algebra Σ and

a measure µ. If the set S contains open sets then B is defined and, if we take Σ = B, then
µ is called a Borel measure.

Sets of measure zero pose some problems since subsets of sets of measure zero might

not be measurable. But there is a procedure, called the completion of the measure µ, to

eliminate this. We won’t need to worry about this. Instead, we will refer to the following

property:

Definition 6. Given a measure space (S,Σ, µ), some property is said to hold µ-almost

everywhere, or simply a.e., provided the subset of S for which the property does not hold

is a subset of a set of measure zero.

Undoubtedly one the most important measures is the Lebesgue measure in Rn. We will

not construct it here but we urge the reader to look at its construction in a good book,

for instance W. Rudin’s [9]. Another useful measure is.

Example 7. The Dirac delta-measure, δa, where a ∈ Rn is a fixed point is defined by

δa(A) =



1, if a ∈ A

0, if a ̸∈ A.
(5)

Show that δa is a measure. Since it’s concentrated in a point, in this case Σ could be B or

all subsets of Rn. Recalling the characteristic function of A we have

δa(A) = χA(a). (6)

2.2.2. Measurable functions and Integrals

Let f : U −→ R be a function on U . Given a sigma-algebra Σ, we say that f is

measurable (with respect to Σ) if, for every t ∈ R the set

L>
f (t) = {x ∈ U : f(x) > t} is measurable, that is, L>

f (t) ∈ Σ. (7)

A complex function, f : U −→ C, f = u + iv is measurable provided its real and

imaginary parts, u and v, are measurable. Also, we say that a nonnegative measura-

ble function f is a strictly positive measurable function on a measurable set A provided

{x ∈ A : f(x) = 0} has measure zero, that is, f is positive a.e. (recall Def. 6).
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Remark that measurable functions are defined in terms of Σ alone, the existence of a

measure is not necessary.

Exercise 5. Show that the following affirmatives are equivalent:

(i) L>
f (t) ∈ Σ.

(ii) L<
f (t) = {x ∈ U : f(x) < t} ∈ Σ.

(iii) L≥
f (t) = {x ∈ U : f(x) ≥ t} ∈ Σ.

(iv) L≤
f (t) = {x ∈ U : f(x) ≤ t} ∈ Σ.

Hence we could have used any of these to define measurability of a function. Hint:

{x ∈ U : f(x) > t} =

∞∪
n=1

{x ∈ U : f(x) ≥ t+ 1/n}.

Exercise 6. If Σ = B in Rn then any continuous or lower semicontinuous or upper

semicontinuous function is measurable. Hint: f is lower semicontinuous if L>
f (t) is open

and upper semicontinuous if L<
f (t) is open.

Exercise 7. Show that, if f and g are measurable, then so are the functions

x �→ af(x) + bg(x), a, b ∈ C, x �→ f(x)g(x), x �→ |f(x)|, x �→ h(f(x)), where h : C −→ C
is Borel measurable; x �→ máx{f(x), g(x)}.

We now define the integral of a measurable function with respect to a measure µ. What

we give here is just a very brief sketch; the interested reader should consult a text on the

subject, like [7].

Let f : U −→ R≥0 be a nonnegative Σ measurable function. Define

Rf (t) = µ(L>
f (t)).

Rf is a nonincreasing function of t since L>
f (t) ⊂ L>

f (s) whenever t ≥ s, that is

Rf : R≥0 −→ R≥0

is a monotone nonincreasing function of t. Therefore its Riemann integral exists (could be

∞) and, by definition,
∫

U

f(x) dµ(x) =

∞∫

0

Rf (t) dt. (8)

In case f is measurable, nonnegative and
∫
U

f dµ < ∞ we say that f is summable or

integrable.
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Suppose now that f : U −→ C, f = u+ iv with u and v real valued. We split each of

u and v as a difference of two nonnegative functions as follows:

u(x) = u+(x)− u−(x) = máx{u(x), 0} − (−mı́n{u(x), 0})

v(x) = v+(x)− v−(x) = máx{v(x), 0} − (−mı́n{v(x), 0}).

If f is measurable, then so are u+, u−, v+, v− and, provided these are summable, we define
∫

U

f dµ =

∫

U

u+ dµ−
∫

U

u− dµ+

∫

U

v+ dµ−
∫

U

v− dµ. (9)

Remark 8. We shall write
∫
U

f(x) dx in case the measure is the Lebesgue measure.

An important example is that of the characteristic function of a measurable set A [see

(3)]. If µ(A) < ∞ then χA is summable and
∫

A

χA dµ = µ(A). (10)

2.3. Distributions

Recall the space D(U) defined in 2.1.1.

Definition 9. A distribution is a continuous linear functional on D(U), that is,

T : D(U) −→ C

satisfies T (λϕ) = λT (ϕ), T (ϕ1 + ϕ2) = T (ϕ1) + T (ϕ2) for all λ ∈ C and ϕ, ϕ1, ϕ2 ∈ D(U).

Continuity means that if ϕn ∈ D(U) and ϕn −→ ϕ in D(U), then T (ϕn) −→ T (ϕ).

The space of distributions on U is denoted by D′(U). Since distributions can be added

and multiplied by complex numbers, this is a C-vector space, dual to the space D(U).

Remark that continuity in D′(U) means sequential continuity.

Convergence of distributions means: a sequence Tm ∈ D′(U) converges in D′(U) to

T ∈ D′(U),

Tm −→ T

if, for all ϕ ∈ D(U), the numerical sequence Tm(ϕ) converges to T (ϕ),

Tm(ϕ) −→ T (ϕ).
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Remark that measurable functions are defined in terms of Σ alone, the existence of a

measure is not necessary.
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f (t) = {x ∈ U : f(x) < t} ∈ Σ.
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∞∪
n=1
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f (t) is open.

Exercise 7. Show that, if f and g are measurable, then so are the functions

x �→ af(x) + bg(x), a, b ∈ C, x �→ f(x)g(x), x �→ |f(x)|, x �→ h(f(x)), where h : C −→ C
is Borel measurable; x �→ máx{f(x), g(x)}.

We now define the integral of a measurable function with respect to a measure µ. What

we give here is just a very brief sketch; the interested reader should consult a text on the

subject, like [7].

Let f : U −→ R≥0 be a nonnegative Σ measurable function. Define

Rf (t) = µ(L>
f (t)).

Rf is a nonincreasing function of t since L>
f (t) ⊂ L>

f (s) whenever t ≥ s, that is

Rf : R≥0 −→ R≥0

is a monotone nonincreasing function of t. Therefore its Riemann integral exists (could be

∞) and, by definition,
∫

U

f(x) dµ(x) =

∞∫

0

Rf (t) dt. (8)

In case f is measurable, nonnegative and
∫
U

f dµ < ∞ we say that f is summable or

integrable.
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Suppose now that f : U −→ C, f = u+ iv with u and v real valued. We split each of

u and v as a difference of two nonnegative functions as follows:

u(x) = u+(x)− u−(x) = máx{u(x), 0} − (−mı́n{u(x), 0})

v(x) = v+(x)− v−(x) = máx{v(x), 0} − (−mı́n{v(x), 0}).

If f is measurable, then so are u+, u−, v+, v− and, provided these are summable, we define
∫

U

f dµ =

∫

U

u+ dµ−
∫

U

u− dµ+

∫

U

v+ dµ−
∫

U

v− dµ. (9)

Remark 8. We shall write
∫
U

f(x) dx in case the measure is the Lebesgue measure.

An important example is that of the characteristic function of a measurable set A [see

(3)]. If µ(A) < ∞ then χA is summable and
∫

A

χA dµ = µ(A). (10)

2.3. Distributions

Recall the space D(U) defined in 2.1.1.

Definition 9. A distribution is a continuous linear functional on D(U), that is,

T : D(U) −→ C

satisfies T (λϕ) = λT (ϕ), T (ϕ1 + ϕ2) = T (ϕ1) + T (ϕ2) for all λ ∈ C and ϕ, ϕ1, ϕ2 ∈ D(U).

Continuity means that if ϕn ∈ D(U) and ϕn −→ ϕ in D(U), then T (ϕn) −→ T (ϕ).

The space of distributions on U is denoted by D′(U). Since distributions can be added

and multiplied by complex numbers, this is a C-vector space, dual to the space D(U).

Remark that continuity in D′(U) means sequential continuity.

Convergence of distributions means: a sequence Tm ∈ D′(U) converges in D′(U) to

T ∈ D′(U),

Tm −→ T

if, for all ϕ ∈ D(U), the numerical sequence Tm(ϕ) converges to T (ϕ),

Tm(ϕ) −→ T (ϕ).
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This is indeed a weak kind of convergence.

Now we present examples of distributions that are defined by actual functions.

To do this we introduce the space L1
loc(U). This consists of the class of functions which

are Borel measurable on U and, for each point a ∈ U , there exists an open rectangle

Ra ⊂ U , containing a and such that∫

Ra

|f(x)| dx < ∞.

We could have used open balls Ra instead of rectangles. These are called locally summable

or locally integrable functions.

To each f ∈ L1
loc(U) we define

Tf (ϕ) =

∫

U

f(x)ϕ(x) dx (11)

where ϕ ∈ D(U) is a test function.

Proposition 10. For every locally summable function f , the map Tf given by (11) defines

a distribution on U .

Proof. Tf is linear since integration is. First we show the absolute convergence of the

integral in (11). Since supp(ϕ) is compact there are finitely many points a1, . . . , ak such that

supp(ϕ) is contained in the union of the open rectangles R1, . . . , Rk and |f | is summable in

each Ri. We have then χsupp(ϕ) ≤ χR1+· · ·+χRk
. Hence, since

∫
A

g(x) dx =
∫
U

χA(x)g(x) dx,

A ⊂ U , we get

|Tf (ϕ)| =

�������

∫

supp(ϕ)

f(x)ϕ(x) dx

�������
≤

∫

supp(ϕ)

|f(x)||ϕ(x)| dx ≤
k∑

i=1

∫

Ri

|f(x)||ϕ(x)| dx ≤

≤




k∑
i=1

∫

Ri

|f(x)| dx


 sup

x∈supp(ϕ)
|ϕ(x)| = C sup

x∈supp(ϕ)
|ϕ(x)|.

Suppose now ϕn −→ ϕ in D(U). Hence we have a fixed compact set K ⊂ U such that

supp(ϕn − ϕ) ⊂ K. Then, repeating the estimate above with K in place of supp(ϕ) and

letting R̃i denote appropriate open rectangles covering K we get

|Tf (ϕn)− Tf (ϕ)| = |Tf (ϕn − ϕ)| ≤




k∑
i=1

∫

R̃i

|f(x)| dx




� �� �
a constant

sup
x∈K

|ϕn(x)− ϕ(x)| −→ 0
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An Introduction to Distributions and Currents

uniformly on K. �
Now we proceed to show that Tf is uniquely determined by the function f . To do this

we must introduce convolutions. Suppose f and g are complex valued functions in L1(Rn),

that is, they are measurable and
∫
Rn

|f(x)| dx < ∞,
∫
Rn

|g(x)| dx < ∞. Their convolution is

the function f ∗ g defined by

f ∗ g(x) =
∫

Rn

f(x− y)g(y) dy =

∫

Rn

f(z)g(x− z) dz. (12)

The last equality says f ∗ g = g ∗ f by a change of variables (exercise). Remark that (12)

is well defined a.e. and f ∗ g ∈ L1(Rn).

Exercise 8. Let A and B be subsets of Rn and define

A+B = {a+ b : a ∈ A, b ∈ B}.

Show that if A is closed and B is compact then A+B is closed. Give an example with A

and B closed and A+B not closed.

Let ϕ be a function like in Corollary 3 and ϵ > 0. Put

ϕϵ(x) =
1

ϵn
ϕ
(x
ϵ

)
∈ C∞

c (Rn). (13)

Lemma 11. Suppose f ∈ L1(Rn), f continuous and ϕϵ with supp(ϕ) = B(0, 1). The

function f ∗ ϕϵ converges uniformly to f on every compact set K as ϵ → 0. Moreover, for

every ϵ > 0 the function f ∗ ϕϵ ∈ C∞(Rn).

Proof. First of all

∫

Rn

ϕϵ(x) dx =

∫

Rn

ϕ
(x
ϵ

) dx

ϵn
=

∫

Rn

ϕ(y) dy = 1.

Then,

(f ∗ϕϵ)(x)−f(x) =

∫

Rn

f(x−y)ϕϵ(y) dy−f(x)

∫

Rn

ϕϵ(y) dy =

∫

Rn

(f(x−y)−f(x))ϕϵ(y) dy =

=

∫

supp(ϕϵ)

(f(x− y)− f(x))ϕϵ(y) dy.
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This is indeed a weak kind of convergence.

Now we present examples of distributions that are defined by actual functions.

To do this we introduce the space L1
loc(U). This consists of the class of functions which

are Borel measurable on U and, for each point a ∈ U , there exists an open rectangle

Ra ⊂ U , containing a and such that∫

Ra

|f(x)| dx < ∞.

We could have used open balls Ra instead of rectangles. These are called locally summable

or locally integrable functions.

To each f ∈ L1
loc(U) we define

Tf (ϕ) =

∫

U

f(x)ϕ(x) dx (11)

where ϕ ∈ D(U) is a test function.

Proposition 10. For every locally summable function f , the map Tf given by (11) defines

a distribution on U .

Proof. Tf is linear since integration is. First we show the absolute convergence of the

integral in (11). Since supp(ϕ) is compact there are finitely many points a1, . . . , ak such that

supp(ϕ) is contained in the union of the open rectangles R1, . . . , Rk and |f | is summable in

each Ri. We have then χsupp(ϕ) ≤ χR1+· · ·+χRk
. Hence, since

∫
A

g(x) dx =
∫
U

χA(x)g(x) dx,

A ⊂ U , we get

|Tf (ϕ)| =

�������

∫

supp(ϕ)

f(x)ϕ(x) dx

�������
≤

∫

supp(ϕ)

|f(x)||ϕ(x)| dx ≤
k∑

i=1

∫

Ri

|f(x)||ϕ(x)| dx ≤

≤




k∑
i=1

∫

Ri

|f(x)| dx


 sup

x∈supp(ϕ)
|ϕ(x)| = C sup

x∈supp(ϕ)
|ϕ(x)|.

Suppose now ϕn −→ ϕ in D(U). Hence we have a fixed compact set K ⊂ U such that

supp(ϕn − ϕ) ⊂ K. Then, repeating the estimate above with K in place of supp(ϕ) and

letting R̃i denote appropriate open rectangles covering K we get

|Tf (ϕn)− Tf (ϕ)| = |Tf (ϕn − ϕ)| ≤




k∑
i=1

∫

R̃i

|f(x)| dx




� �� �
a constant

sup
x∈K

|ϕn(x)− ϕ(x)| −→ 0
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uniformly on K. �
Now we proceed to show that Tf is uniquely determined by the function f . To do this

we must introduce convolutions. Suppose f and g are complex valued functions in L1(Rn),

that is, they are measurable and
∫
Rn

|f(x)| dx < ∞,
∫
Rn

|g(x)| dx < ∞. Their convolution is

the function f ∗ g defined by

f ∗ g(x) =
∫

Rn

f(x− y)g(y) dy =

∫

Rn

f(z)g(x− z) dz. (12)

The last equality says f ∗ g = g ∗ f by a change of variables (exercise). Remark that (12)

is well defined a.e. and f ∗ g ∈ L1(Rn).

Exercise 8. Let A and B be subsets of Rn and define

A+B = {a+ b : a ∈ A, b ∈ B}.

Show that if A is closed and B is compact then A+B is closed. Give an example with A

and B closed and A+B not closed.

Let ϕ be a function like in Corollary 3 and ϵ > 0. Put

ϕϵ(x) =
1

ϵn
ϕ
(x
ϵ

)
∈ C∞

c (Rn). (13)

Lemma 11. Suppose f ∈ L1(Rn), f continuous and ϕϵ with supp(ϕ) = B(0, 1). The

function f ∗ ϕϵ converges uniformly to f on every compact set K as ϵ → 0. Moreover, for

every ϵ > 0 the function f ∗ ϕϵ ∈ C∞(Rn).

Proof. First of all

∫

Rn

ϕϵ(x) dx =

∫

Rn

ϕ
(x
ϵ

) dx

ϵn
=

∫

Rn

ϕ(y) dy = 1.

Then,

(f ∗ϕϵ)(x)−f(x) =

∫

Rn

f(x−y)ϕϵ(y) dy−f(x)

∫

Rn

ϕϵ(y) dy =

∫

Rn

(f(x−y)−f(x))ϕϵ(y) dy =

=

∫

supp(ϕϵ)

(f(x− y)− f(x))ϕϵ(y) dy.
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This gives

|(f ∗ ϕϵ)(x)− f(x)| ≤
∫

supp(ϕϵ)

|f(x− y)− f(x)|ϕϵ(y) dy ≤ sup
y∈supp(ϕϵ)

|f(x− y)− f(x)|.

Given K ⊂ Rn compact let K ′ = K + B(0, 1) which is also compact. Since f is uni-

formly continuous on any compact set, given ε > 0, there exists a 1 > δ > 0 such that

|f(x − y) − f(x)| < ε for all x ∈ K ⊂ K ′ and |y| < δ. Take ϵ small enough so that

supp(ϕϵ) ⊂ B(0, δ) and conclude the first affirmative. Now,

fϵ(x) = f ∗ ϕϵ(x) =

∫

Rn

f(z)ϕϵ(x− z) dz

and differentiation under the integral sign gives

∂αfϵ = ∂α(f ∗ ϕϵ) = f ∗ ∂αϕϵ

from which we conclude fϵ = f ∗ ϕϵ ∈ C∞(Rn). �

Remark 12. We assumed f is continuous in the lemma above, but this hypothesis is

not necessary. However, if we had only f ∈ L1(Rn) then the proof would require more

machinery from integration theory than we have at hand. Again, the reader should consult

[9]. Anyway, the lemma gives a smooth approximation of a continuous function on any

compact set.

Proposition 13. Let C(U) be the C-vector space of complex valued continuous functions

defined in the open set U ⊂ Rn. The map

C(U) −→ D′(U)

f �−→ Tf

is linear and injective.

Proof. Linearity follows immediately from the definition of Tf . Once the map is linear,

to show injectivity is enough to show its kernel is the null subspace. Now, f is in the kernel

of f �−→ Tf if Tf (ϕ) = 0 for every test function ϕ. Let R be the reflection of a function,

R(g(z)) = g(−z) and Tx be the translation Tx(g(z)) = g(z − x), so that, for ϵ sufficiently

small,

(TxRϕϵ)(z) = ϕϵ(x− z).

56 VI Escuela Doctoral Intercontinental de Matemáticas PUCP - UVA
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By (12) we have

fϵ(x) = f ∗ ϕϵ(x) = Tf (TxRϕϵ) (14)

But by Lemma 11 fϵ converges uniformly to f on compact sets and hence

f(x) = ĺım
ϵ→0

fϵ(x) = ĺım
ϵ→0

Tf (TxRϕϵ) = 0.

�
Proposition 13 allows to identify f and Tf whenever f ∈ C(U).

Remark 14. In general, for f ∈ L1
loc(U) the result is

Tf = Tg ⇐⇒ f = g a.e. (15)

With this at hand, if T is a distribution in D′(U) of the form Tf for a function f in

L1
loc(U), then we say that the distribution T is the function f . This allow us to use function

notations for distributions, hence, for every T ∈ D′(U) we write

T (ϕ) =

∫

U

T (x)ϕ(x) dx,

but the reader should have in mind that there is no sense in saying that the distribution T

assumes the value T (x) at the point x.

Not every distribution is of the form Tf for some f . A distinguished example is the

Dirac delta-function (recall (5)):

δa(ϕ) = ϕ(a) for a fixed a ∈ U. (16)

To see it’s not a Tf take a test function ξ as in Corollary 3 with ξ(a) > 0. If δa = Tf for

some f ∈ L1
loc(U) then f = 0 a.e. in U \ {a} and, since {a} has meausre zero, f = 0 a.e.

in U which gives Tf = 0, a contradiction since δa(ξ) ̸= 0.

2.4. Distributions and measures

Let K ⊂ U be compact. The space C∞
c (K) is formed by all ϕ ∈ C∞

c (U) such that

supp(ϕ) ⊂ K. For every integer k ≥ 0 we define the Ck norm in C∞
c (K) by

∥ϕ∥(k) = sup
x∈U ;|α|≤k

|∂αϕ(x)|. (17)
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14132 Escuela Doctoral Intercontinental Matematicas  TAREA.indd   56 28/10/2014   11:39:07 a.m.



57

M. G. Soares

This gives

|(f ∗ ϕϵ)(x)− f(x)| ≤
∫

supp(ϕϵ)

|f(x− y)− f(x)|ϕϵ(y) dy ≤ sup
y∈supp(ϕϵ)

|f(x− y)− f(x)|.

Given K ⊂ Rn compact let K ′ = K + B(0, 1) which is also compact. Since f is uni-

formly continuous on any compact set, given ε > 0, there exists a 1 > δ > 0 such that

|f(x − y) − f(x)| < ε for all x ∈ K ⊂ K ′ and |y| < δ. Take ϵ small enough so that

supp(ϕϵ) ⊂ B(0, δ) and conclude the first affirmative. Now,

fϵ(x) = f ∗ ϕϵ(x) =

∫

Rn

f(z)ϕϵ(x− z) dz

and differentiation under the integral sign gives

∂αfϵ = ∂α(f ∗ ϕϵ) = f ∗ ∂αϕϵ

from which we conclude fϵ = f ∗ ϕϵ ∈ C∞(Rn). �

Remark 12. We assumed f is continuous in the lemma above, but this hypothesis is

not necessary. However, if we had only f ∈ L1(Rn) then the proof would require more

machinery from integration theory than we have at hand. Again, the reader should consult

[9]. Anyway, the lemma gives a smooth approximation of a continuous function on any

compact set.

Proposition 13. Let C(U) be the C-vector space of complex valued continuous functions

defined in the open set U ⊂ Rn. The map

C(U) −→ D′(U)

f �−→ Tf

is linear and injective.

Proof. Linearity follows immediately from the definition of Tf . Once the map is linear,

to show injectivity is enough to show its kernel is the null subspace. Now, f is in the kernel

of f �−→ Tf if Tf (ϕ) = 0 for every test function ϕ. Let R be the reflection of a function,

R(g(z)) = g(−z) and Tx be the translation Tx(g(z)) = g(z − x), so that, for ϵ sufficiently

small,

(TxRϕϵ)(z) = ϕϵ(x− z).
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By (12) we have

fϵ(x) = f ∗ ϕϵ(x) = Tf (TxRϕϵ) (14)

But by Lemma 11 fϵ converges uniformly to f on compact sets and hence

f(x) = ĺım
ϵ→0

fϵ(x) = ĺım
ϵ→0

Tf (TxRϕϵ) = 0.

�
Proposition 13 allows to identify f and Tf whenever f ∈ C(U).

Remark 14. In general, for f ∈ L1
loc(U) the result is

Tf = Tg ⇐⇒ f = g a.e. (15)

With this at hand, if T is a distribution in D′(U) of the form Tf for a function f in

L1
loc(U), then we say that the distribution T is the function f . This allow us to use function

notations for distributions, hence, for every T ∈ D′(U) we write

T (ϕ) =

∫

U

T (x)ϕ(x) dx,

but the reader should have in mind that there is no sense in saying that the distribution T

assumes the value T (x) at the point x.

Not every distribution is of the form Tf for some f . A distinguished example is the

Dirac delta-function (recall (5)):

δa(ϕ) = ϕ(a) for a fixed a ∈ U. (16)

To see it’s not a Tf take a test function ξ as in Corollary 3 with ξ(a) > 0. If δa = Tf for

some f ∈ L1
loc(U) then f = 0 a.e. in U \ {a} and, since {a} has meausre zero, f = 0 a.e.

in U which gives Tf = 0, a contradiction since δa(ξ) ̸= 0.

2.4. Distributions and measures

Let K ⊂ U be compact. The space C∞
c (K) is formed by all ϕ ∈ C∞

c (U) such that

supp(ϕ) ⊂ K. For every integer k ≥ 0 we define the Ck norm in C∞
c (K) by

∥ϕ∥(k) = sup
x∈U ;|α|≤k

|∂αϕ(x)|. (17)
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Lemma 15. Let T : C∞
c (U) −→ C be a linear functional. T ∈ D′(U) if, and only if, for

every compact subset K ⊂ U , there exists a constant c > 0 and k ∈ Z≥0 such that

|T (ϕ)| ≤ c ∥ϕ∥(k) ∀ ϕ ∈ C∞
c (K). (18)

Proof. Recall that (Definition 1) ϕi → ϕ in C∞
c (U) if there exists a K ⊂ U , K compact,

such that ϕi and ϕ belong to C∞
c (K) for all i and ĺım

i→∞
∥ϕi − ϕ∥ = 0 for all k ≥ 0. If (18)

holds, then

T (ϕi)− T (ϕ) = T (ϕi − ϕ) −→ 0 as i → ∞.

Suppose now T does not satisfy the hypothesis above. Then we can find a compact set

K ⊂ U such that, for every c > 0 and k ≥ 0 there exists ϕc,k ∈ C∞
c (K) satisfying

|T (ϕc,k)| > c ∥ϕc,k∥(k). Put φc,k =
1

|T (ϕc,k)|
ϕc,k. This gives

∥φc,k∥(k) =
1

|T (ϕc,k)|
∥ϕc,k∥(k) <

1

c
and |T (φc,k)| = 1.

But then

ĺım
k→∞

φk,k → 0 in C∞
c (U) and T (φk,k) � 0

and T is not continuous, hence is not a distribution. �

Definition 16. Let T ∈ D′(U). The smallest integer k for which (18) holds, for some

constant c, is the order of T on K. The supremum over all compact sets K ⊂ U of the

orders of T on K is the order of the distribution T on U .

Exercise 9. (i) Show that T (ϕ) = ϕ(k)(0), ϕ ∈ C∞
c (R) is a distribution in D′(R) of order

≤ k.

(ii) Show that T as in (i) is of order k in any neighborhood of 0. Hint: Consider

ϕϵ(x) = xkφ(x/ϵ) where φ is a bump function equal to 1 around 0.

(iii) Show that the distribution given by S(ϕ) =
∞∑
0
(−1)kϕ(k)(k) is not of finite order.

We now consider distributions of finite order k and show they can be identified with

continuous linear forms on the space Ck
c (U), which is the space of functions of class Ck

with compact support in U .

First, convergence in Ck
c (U) follows Definition 1 with the difference that only multi-

indices α with |α| ≤ k are considered. Also remark that, if ∞ ≥ k > m then, a sequence

ϕi ∈ Ck
c (U) converges in Ck

c (U) to ϕ implies that ϕi also converges to ϕ in Cm
c (U).

Since D(U) � Cm
c (U) the restriction to D(U) of a continuous linear form on Cm

c (U) is a

distribution of order ≤ m.
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Proposition 17. Let T ∈ D′(U) be a distribution of order ≤ k. Then T extends in a

unique way to a continuous linear form S on Ck
c (U).

Proof. Recall the functions ϕϵ of (13). If f ∈ Ck
c (U) then the functions

fϵ = f ∗ ϕϵ ∈ C∞
c (Rn) satisfy ∂αfϵ = ∂αf ∗ ϕϵ for all α with |α| ≤ k and ∂αfϵ → ∂αf uni-

formly as ϵ → 0. Now, for all sufficiently small ϵ > 0, the supports supp(fϵ) are contained

in a fixed compact subset of U (exercise) and then fϵ ∈ C∞
c (U) converge to f ∈ Ck

c (U).

We have

|T (fϵ)− T (fρ)| = |T (fϵ − fρ)| ≤ c∥fϵ − fρ∥(k)

and ∥fϵ − fρ∥(k) → 0 as ϵ, ρ → 0, which says that ϵ �→ T (fϵ) is a Cauchy sequence in C
and hence it has a limit S(f) ∈ C. Since f �→ f ∗ϕϵ is linear we have defined a linear form

S on Ck
c (U). Moreover

|S(f)| ≤ |S(f)− T (fϵ)|+ |T (fϵ)| ≤ |S(f)− T (fϵ)|+ c∥fϵ∥(k)

≤ |S(f)− T (fϵ)|+ c∥f∥(k) + c∥f − fϵ∥(k) → c∥f∥(k) as ϵ → 0

and, as |S(f)| ≤ c∥f∥(k), S is continuous on Ck
c (U) and we also have S(f) = T (f) for

f ∈ C∞
c (U). Remark that S is unique (limit of a number sequence) and does not depend

on the choice of the family of functions ϕϵ. �
We identify T with S, its extension to Ck

c (U) and write T = S.

A Radon measure is a continuous linear form on the space C0
c (U) of continuous fun-

ctions with compact support in the open set U ⊂ Rn. By Proposition 10 (and Remark 14)

Tf is a distribution of order 0, hence extends to a unique Radon measure on U called the

measure with density function f .

Definition 18. A distribution T ∈ D′(U) is positive if, for all ϕ ∈ D(U) with ϕ ≥ 0 we

have T (ϕ) ≥ 0. A measure T on U is positive if T (f) ≥ 0 for all non-negative f ∈ C0
c (U).

We write T ≥ 0 if T is positive.

We close this first section with the

Theorem 19. A positive distribution is a positive measure.

Proof. Let T ∈ D′(U) be a positive distribution. Given a compact set K ⊂ U , let

ϱ ∈ D(U) be such that ϱ = 1 on K and 0 ≤ ϱ ≤ 1 (Proposition 2). This gives, by
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Lemma 15. Let T : C∞
c (U) −→ C be a linear functional. T ∈ D′(U) if, and only if, for

every compact subset K ⊂ U , there exists a constant c > 0 and k ∈ Z≥0 such that

|T (ϕ)| ≤ c ∥ϕ∥(k) ∀ ϕ ∈ C∞
c (K). (18)

Proof. Recall that (Definition 1) ϕi → ϕ in C∞
c (U) if there exists a K ⊂ U , K compact,

such that ϕi and ϕ belong to C∞
c (K) for all i and ĺım

i→∞
∥ϕi − ϕ∥ = 0 for all k ≥ 0. If (18)

holds, then

T (ϕi)− T (ϕ) = T (ϕi − ϕ) −→ 0 as i → ∞.

Suppose now T does not satisfy the hypothesis above. Then we can find a compact set

K ⊂ U such that, for every c > 0 and k ≥ 0 there exists ϕc,k ∈ C∞
c (K) satisfying

|T (ϕc,k)| > c ∥ϕc,k∥(k). Put φc,k =
1

|T (ϕc,k)|
ϕc,k. This gives

∥φc,k∥(k) =
1

|T (ϕc,k)|
∥ϕc,k∥(k) <

1

c
and |T (φc,k)| = 1.

But then

ĺım
k→∞

φk,k → 0 in C∞
c (U) and T (φk,k) � 0

and T is not continuous, hence is not a distribution. �

Definition 16. Let T ∈ D′(U). The smallest integer k for which (18) holds, for some

constant c, is the order of T on K. The supremum over all compact sets K ⊂ U of the

orders of T on K is the order of the distribution T on U .

Exercise 9. (i) Show that T (ϕ) = ϕ(k)(0), ϕ ∈ C∞
c (R) is a distribution in D′(R) of order

≤ k.

(ii) Show that T as in (i) is of order k in any neighborhood of 0. Hint: Consider

ϕϵ(x) = xkφ(x/ϵ) where φ is a bump function equal to 1 around 0.

(iii) Show that the distribution given by S(ϕ) =
∞∑
0
(−1)kϕ(k)(k) is not of finite order.

We now consider distributions of finite order k and show they can be identified with

continuous linear forms on the space Ck
c (U), which is the space of functions of class Ck

with compact support in U .

First, convergence in Ck
c (U) follows Definition 1 with the difference that only multi-

indices α with |α| ≤ k are considered. Also remark that, if ∞ ≥ k > m then, a sequence

ϕi ∈ Ck
c (U) converges in Ck

c (U) to ϕ implies that ϕi also converges to ϕ in Cm
c (U).

Since D(U) � Cm
c (U) the restriction to D(U) of a continuous linear form on Cm

c (U) is a

distribution of order ≤ m.
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An Introduction to Distributions and Currents

Proposition 17. Let T ∈ D′(U) be a distribution of order ≤ k. Then T extends in a

unique way to a continuous linear form S on Ck
c (U).
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c (U) then the functions
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in a fixed compact subset of U (exercise) and then fϵ ∈ C∞
c (U) converge to f ∈ Ck

c (U).
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and, as |S(f)| ≤ c∥f∥(k), S is continuous on Ck
c (U) and we also have S(f) = T (f) for

f ∈ C∞
c (U). Remark that S is unique (limit of a number sequence) and does not depend

on the choice of the family of functions ϕϵ. �
We identify T with S, its extension to Ck

c (U) and write T = S.

A Radon measure is a continuous linear form on the space C0
c (U) of continuous fun-

ctions with compact support in the open set U ⊂ Rn. By Proposition 10 (and Remark 14)

Tf is a distribution of order 0, hence extends to a unique Radon measure on U called the

measure with density function f .

Definition 18. A distribution T ∈ D′(U) is positive if, for all ϕ ∈ D(U) with ϕ ≥ 0 we

have T (ϕ) ≥ 0. A measure T on U is positive if T (f) ≥ 0 for all non-negative f ∈ C0
c (U).

We write T ≥ 0 if T is positive.

We close this first section with the

Theorem 19. A positive distribution is a positive measure.

Proof. Let T ∈ D′(U) be a positive distribution. Given a compact set K ⊂ U , let

ϱ ∈ D(U) be such that ϱ = 1 on K and 0 ≤ ϱ ≤ 1 (Proposition 2). This gives, by
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14132 Escuela Doctoral Intercontinental Matematicas  TAREA.indd   59 28/10/2014   11:39:09 a.m.



60

M. G. Soares

hypothesis, T (ϱ) ≥ 0. Let ϕ ∈ C∞
c (K) be real-valued and c = ∥ϕ∥ = supx∈K |ϕ(x)|. Then

cϱ− ϕ ≥ 0 and

c T (ϱ)− T (ϕ) = T (cϱ− ϕ) ≥ 0.

It follows that c T (ϱ)− T (ϕ) is real and non-negative. Hence T (ϕ) is real and

T (ϕ) ≤ T (ϱ)∥ϕ∥.

If ϕ ∈ C∞
c (K) is complex valued then T (ϕ) = T (Reϕ) + iT (Imϕ). Write θ = arg T (ϕ)

and φ = Re (e−i θϕ). Then,

|T (ϕ)| = e−i θT (ϕ) = T (e−i θϕ)

hence T (e−i θϕ) is real since it equals |T (ϕ)|, a non-negative real number. But then

T (e−i θϕ) = T (Re (e−i θϕ)) = T (φ)

and we get

|T (ϕ)| = T (φ) ≤ T (ϱ)∥φ∥ ≤ T (ϱ)∥ϕ∥.

This shows T has order 0 and, by Proposition 17, it extends to a unique continuous linear

form T on C0
c (U).

Now, if f ∈ C0
c (U) with f ≥ 0, then fϵ = f ∗ ϕϵ ≥ 0 since ϕϵ ≥ 0. It follows that

T (fϵ) ≥ 0 and, as ĺım
ϵ→0

T (fϵ) = T (f), that T (f) ≥ 0, hence T is a positive measure. �

Remark 20. In fact this Theorem can be rephrased as follows:

Let T ∈ D′(U) be a positive distribution. Then, there is a unique positive Borel measure

µ on U such that µ(K) < ∞ for all compact sets K ⊂ U and such that, for all ϕ ∈ D(U)

T (ϕ) =

∫

U

ϕ(x)dµ(x). (19)

Conversely, any positive Borel measure with µ(K) < ∞ for all compact sets K ⊂ U defines

a positive distribution via (19).

We do not present a proof of this result because it involves the construction of mea-

sures from outer measures. It is an extension of the so-called Riez-Markov representation

theorem (see [9]).
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2.5. Derivatives

Recall that α = (α1, . . . , αn) ∈ (Z≥0)
n, |α| = α1 + · · ·+ αn,

∂αf =

(
∂

∂x1

)α1

· · ·
(

∂

∂xn

)αn

f , ∂if =
∂f

∂xi
.

If f is a C1 function on the open set U ⊂ Rn then integration by parts gives
∫

U

∂if(x) ϕ(x) dx = −
∫

U

f(x) ∂iϕ(x) dx

where ϕ is a test function (exercise), which tells us that

T∂if (ϕ) = −Tf (∂iϕ).

We use this to define derivatives of distributions.

Definition 21. If T ∈ D′(U) and α is a multi-index, the distributional or weak derivative

∂αT is defined by

∂αT (ϕ) = (−1)α T (∂αϕ). (20)

Lemma 22. ∂αT is a distribution.

Proof. Since differentiation is linear we must only show its continuity on D(U). First

we show that if ϕ ∈ D(U) then so does ∂αϕ for all α. So, suppose ϕi → ϕ in D(U). Then

supp(∂αϕi − ∂αϕ) ⊂ supp(ϕi − ϕ) ⊂ K ⊂ U . Let β = (β1, . . . , βn) be a multi-index. Since

∂β(∂αϕj)−∂β(∂αϕ) = ∂β+αϕj−∂β+αϕ we have that ∂β+αϕj−∂β+αϕ converges uniformly

to zero on compact sets and hence ∂αϕ ∈ D(U). Thus,

(−1)α T (∂αϕj) → (−1)α T (∂αϕ) as j → ∞

and this is the same as ∂αT (ϕj) → ∂αT (ϕ) and we are done. �

Lemma 23. ∂α : D′(U) −→ D′(U) is a continuous map, for all α.

Proof. Suppose ĺım
j→∞

Tj(ϕ) = T (ϕ) for all ϕ ∈ D(U). Since the ∂αϕ are test functions

we get, by definition of differentiation,

ĺım
j→∞

∂αTj(ϕ) = ĺım
j→∞

(−1)αTj(∂
αϕ) = (−1)αT (∂αϕ) = ∂αT (ϕ).

�
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hypothesis, T (ϱ) ≥ 0. Let ϕ ∈ C∞
c (K) be real-valued and c = ∥ϕ∥ = supx∈K |ϕ(x)|. Then

cϱ− ϕ ≥ 0 and

c T (ϱ)− T (ϕ) = T (cϱ− ϕ) ≥ 0.

It follows that c T (ϱ)− T (ϕ) is real and non-negative. Hence T (ϕ) is real and

T (ϕ) ≤ T (ϱ)∥ϕ∥.

If ϕ ∈ C∞
c (K) is complex valued then T (ϕ) = T (Reϕ) + iT (Imϕ). Write θ = arg T (ϕ)

and φ = Re (e−i θϕ). Then,

|T (ϕ)| = e−i θT (ϕ) = T (e−i θϕ)

hence T (e−i θϕ) is real since it equals |T (ϕ)|, a non-negative real number. But then

T (e−i θϕ) = T (Re (e−i θϕ)) = T (φ)

and we get

|T (ϕ)| = T (φ) ≤ T (ϱ)∥φ∥ ≤ T (ϱ)∥ϕ∥.

This shows T has order 0 and, by Proposition 17, it extends to a unique continuous linear

form T on C0
c (U).

Now, if f ∈ C0
c (U) with f ≥ 0, then fϵ = f ∗ ϕϵ ≥ 0 since ϕϵ ≥ 0. It follows that

T (fϵ) ≥ 0 and, as ĺım
ϵ→0

T (fϵ) = T (f), that T (f) ≥ 0, hence T is a positive measure. �

Remark 20. In fact this Theorem can be rephrased as follows:

Let T ∈ D′(U) be a positive distribution. Then, there is a unique positive Borel measure

µ on U such that µ(K) < ∞ for all compact sets K ⊂ U and such that, for all ϕ ∈ D(U)

T (ϕ) =

∫

U

ϕ(x)dµ(x). (19)

Conversely, any positive Borel measure with µ(K) < ∞ for all compact sets K ⊂ U defines

a positive distribution via (19).

We do not present a proof of this result because it involves the construction of mea-

sures from outer measures. It is an extension of the so-called Riez-Markov representation

theorem (see [9]).
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An Introduction to Distributions and Currents

2.5. Derivatives

Recall that α = (α1, . . . , αn) ∈ (Z≥0)
n, |α| = α1 + · · ·+ αn,

∂αf =

(
∂
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)α1

· · ·
(

∂
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)αn

f , ∂if =
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.

If f is a C1 function on the open set U ⊂ Rn then integration by parts gives
∫

U

∂if(x) ϕ(x) dx = −
∫

U

f(x) ∂iϕ(x) dx

where ϕ is a test function (exercise), which tells us that

T∂if (ϕ) = −Tf (∂iϕ).

We use this to define derivatives of distributions.

Definition 21. If T ∈ D′(U) and α is a multi-index, the distributional or weak derivative

∂αT is defined by

∂αT (ϕ) = (−1)α T (∂αϕ). (20)

Lemma 22. ∂αT is a distribution.

Proof. Since differentiation is linear we must only show its continuity on D(U). First

we show that if ϕ ∈ D(U) then so does ∂αϕ for all α. So, suppose ϕi → ϕ in D(U). Then

supp(∂αϕi − ∂αϕ) ⊂ supp(ϕi − ϕ) ⊂ K ⊂ U . Let β = (β1, . . . , βn) be a multi-index. Since

∂β(∂αϕj)−∂β(∂αϕ) = ∂β+αϕj−∂β+αϕ we have that ∂β+αϕj−∂β+αϕ converges uniformly

to zero on compact sets and hence ∂αϕ ∈ D(U). Thus,

(−1)α T (∂αϕj) → (−1)α T (∂αϕ) as j → ∞

and this is the same as ∂αT (ϕj) → ∂αT (ϕ) and we are done. �

Lemma 23. ∂α : D′(U) −→ D′(U) is a continuous map, for all α.

Proof. Suppose ĺım
j→∞

Tj(ϕ) = T (ϕ) for all ϕ ∈ D(U). Since the ∂αϕ are test functions

we get, by definition of differentiation,
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j→∞

∂αTj(ϕ) = ĺım
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(−1)αTj(∂
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Remark that this notion of weak derivative extends the usual notion of derivative and

agrees with it provided the usual derivative exists and is continuous. In this weak sense,

all distributions have derivatives of all orders. However, the distributional derivative of a

non-differentiable function (in the usual sense) is not necessarily a function, as is shown

in the following.

Example 24.

The Heaviside function is defined as the distribution associated to the characteristic

function of [0,∞) ⊂ R, H = χ[0,∞) ∈ D′(R). Its derivative is

H ′(ϕ) = −H(ϕ′) = −
∞∫

0

ϕ′(x) dx = −(0− ϕ(0)) = ϕ(0) ∀ϕ ∈ D(R). (21)

Hence, H ′ = δ0, the Dirac delta function at 0. In general, given an interval [a, b], a < b, its

characteristic function, seen as a distribution, can be writen as χ[a,b] = TaH −TbH where

TxH(y) = H(y − x). It follows that

χ′
[a,b] = δa − δb.

3. Manifolds

3.1. Definitions

A complex manifold (Ck, C∞, Cω = real analytic) of dimension n is a topological

space M , which is Hausdorff, connected and with a countable basis, endowed with an

analytic structure defined as follows: there exists an open covering {Uα}α∈A of M and

homeomorphisms φα : Uα −→ Vα where Vα ⊂ Cn (Vα ⊂ Rn) is open, such that the

changes of coordinates

φα ◦ φ−1
β (22)

are holomorphic (Ck, C∞, Cω) where defined. φα is called a chart and, for

z ∈ M , φα(z) = (zα1 , . . . , z
α
n ) ∈ Cn are called the local coordinates in Uα. The collec-

tion {Uα, φα} is called a holomorphic (Ck, C∞, Cω) atlas for M .

If M has dimension n, a connected subset N ⊂ M is a submanifold of dimension

m ≤ n if, for each z ∈ N there exists a chart {Uα, φα}, with z ∈ Uα, such that φα is a

homeomorphism between Uα ∩N and an open set of Cm × {0} ⊂ Cm × Cn−m ∼= Cn.
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Given manifolds M and N , a map f : M −→ N is holomorphic (Ck, C∞, Cω) provided

the compositions

ψβ ◦ f ◦ φ−1
α (23)

are holomorphic (Ck, C∞, Cω) where defined, with ψβ and φα charts in N and M respec-

tively.

X ⊂ M is an analytic set if, for each z ∈ M there is an open neighborhood U ⊂ M of

z and a holomorphic map f : U −→ Cℓ such that X ∩ U = f−1(0) (ℓ may depend on z).

If W ⊂ M is open and ℓ ∈ Z≥0 ∪ {∞, ω} then Cℓ(W,C) (Cℓ(W,R)) is the space of

functions of class Cℓ in W . In case W is not open, it is the space of functions which admit

a Cℓ extension to a neighborhood of W .

3.2. Tangent spaces

A complex manifoldM of dimension n is naturally a real analytic manifold of dimension

2n. Given a point p ∈ M take a chart {Uα, φα} in M with p ∈ Uα. The coordinates of the

points in Uα are

φα(q) = (zα1 (q), . . . , z
α
n (q)) ∈ Cn

= (xα1 (q) + iyα1 (q), . . . , x
α
n(q) + iyαn(q))

= (xα1 (q), y
α
1 (q), . . . , x

α
n(q), y

α
n(q)) ∈ R2n ∼ Cn.

The real tangent space of M at a point p, TpM , is the space of functions of class C∞

(called derivations) ν : M −→ R satisfying:

(i) ν is R-linear and

(ii) ν(fg) = g(p)ν(f) + f(p)ν(g) (Leibniz’s rule).

ν is called a tangent vector at p. If f ∈ C∞(M,R) then, by definition,

∂f

∂xαi
(p) =

∂(f ◦ φ−1
α )

∂xαi
(φα(p)) and similarly for the yαi s.

Hence,
∂

∂xαi
(p) is a tangent vector at z and

{
∂

∂xα1
(p),

∂

∂yα1
(p), . . . ,

∂

∂xαn
(p),

∂

∂yαn
(p)

}
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Remark that this notion of weak derivative extends the usual notion of derivative and

agrees with it provided the usual derivative exists and is continuous. In this weak sense,

all distributions have derivatives of all orders. However, the distributional derivative of a

non-differentiable function (in the usual sense) is not necessarily a function, as is shown

in the following.

Example 24.

The Heaviside function is defined as the distribution associated to the characteristic

function of [0,∞) ⊂ R, H = χ[0,∞) ∈ D′(R). Its derivative is
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Hence, H ′ = δ0, the Dirac delta function at 0. In general, given an interval [a, b], a < b, its

characteristic function, seen as a distribution, can be writen as χ[a,b] = TaH −TbH where

TxH(y) = H(y − x). It follows that

χ′
[a,b] = δa − δb.

3. Manifolds

3.1. Definitions

A complex manifold (Ck, C∞, Cω = real analytic) of dimension n is a topological

space M , which is Hausdorff, connected and with a countable basis, endowed with an

analytic structure defined as follows: there exists an open covering {Uα}α∈A of M and

homeomorphisms φα : Uα −→ Vα where Vα ⊂ Cn (Vα ⊂ Rn) is open, such that the

changes of coordinates

φα ◦ φ−1
β (22)

are holomorphic (Ck, C∞, Cω) where defined. φα is called a chart and, for

z ∈ M , φα(z) = (zα1 , . . . , z
α
n ) ∈ Cn are called the local coordinates in Uα. The collec-

tion {Uα, φα} is called a holomorphic (Ck, C∞, Cω) atlas for M .

If M has dimension n, a connected subset N ⊂ M is a submanifold of dimension

m ≤ n if, for each z ∈ N there exists a chart {Uα, φα}, with z ∈ Uα, such that φα is a

homeomorphism between Uα ∩N and an open set of Cm × {0} ⊂ Cm × Cn−m ∼= Cn.
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Given manifolds M and N , a map f : M −→ N is holomorphic (Ck, C∞, Cω) provided

the compositions

ψβ ◦ f ◦ φ−1
α (23)

are holomorphic (Ck, C∞, Cω) where defined, with ψβ and φα charts in N and M respec-

tively.

X ⊂ M is an analytic set if, for each z ∈ M there is an open neighborhood U ⊂ M of

z and a holomorphic map f : U −→ Cℓ such that X ∩ U = f−1(0) (ℓ may depend on z).

If W ⊂ M is open and ℓ ∈ Z≥0 ∪ {∞, ω} then Cℓ(W,C) (Cℓ(W,R)) is the space of

functions of class Cℓ in W . In case W is not open, it is the space of functions which admit

a Cℓ extension to a neighborhood of W .

3.2. Tangent spaces

A complex manifoldM of dimension n is naturally a real analytic manifold of dimension

2n. Given a point p ∈ M take a chart {Uα, φα} in M with p ∈ Uα. The coordinates of the

points in Uα are

φα(q) = (zα1 (q), . . . , z
α
n (q)) ∈ Cn

= (xα1 (q) + iyα1 (q), . . . , x
α
n(q) + iyαn(q))

= (xα1 (q), y
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1 (q), . . . , x

α
n(q), y

α
n(q)) ∈ R2n ∼ Cn.

The real tangent space of M at a point p, TpM , is the space of functions of class C∞

(called derivations) ν : M −→ R satisfying:

(i) ν is R-linear and

(ii) ν(fg) = g(p)ν(f) + f(p)ν(g) (Leibniz’s rule).

ν is called a tangent vector at p. If f ∈ C∞(M,R) then, by definition,

∂f

∂xαi
(p) =

∂(f ◦ φ−1
α )
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(φα(p)) and similarly for the yαi s.

Hence,
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∂

∂yα1
(p), . . . ,

∂

∂xαn
(p),

∂

∂yαn
(p)

}
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is a real basis of TpM (exercise).

Complexify TpM , that is, TpM
C = TpM ⊗C which means: simply allow multiplication

by complex numbers. This is a C-vector space with dimC TpM
C = 2n. For p ∈ Uα, choose

for TpM
C the basis {

∂

∂zα1
(p),

∂

∂z̄α1
(p), . . . ,

∂

∂zαn
(p),

∂

∂z̄αn
(p)

}

where

∂

∂zαk
(p) =

1

2

(
∂

∂xαk
(p)− i

∂

∂yαk
(p)

)
and

∂

∂z̄αk
(p) =

1

2

(
∂

∂xαk
(p) + i

∂

∂yαk
(p)

)
(24)

Let’s examine changes of coordinates (22) in more detail. Set

�Θαβ = φα ◦ φ−1
β

and write

�Θαβ(x1, y1, . . . , xn, yn) = (u1, v1, . . . , un, vn)

(real coordinates). The derivative of �Θαβ is given by the matrix

D�Θαβ =




∂(u1, v1)

∂(x1, y1)
· · · ∂(un, vn)

∂(xn, yn)
...

. . .
...

∂(un, vn)

∂(x1, y1)
· · · ∂(un, vn)

∂(xn, yn)




where

∂(uj , vj)

∂(xk, yk)
=




∂uj
∂xk

∂uj
∂yk

∂vj
∂xk

∂vj
∂yk


 , 1 ≤ j, k ≤ n.

Now write �Θαβ = (�Θ1, . . . , �Θn) where �Θj = uj + ivj . Changing from the basis

{
∂

∂x1
(z),

∂

∂y1
(z), . . . ,

∂

∂xn
(z),

∂

∂yn
(z)

}

to the basis {
∂

∂z1
(z),

∂

∂z̄1
(z), . . . ,

∂

∂zn
(z),

∂

∂z̄n
(z)

}
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Exercise 10. Show that the change from the basis {∂/∂xj , ∂/∂yj} to the basis {∂/∂zj , ∂/∂z̄j}
is given by the matrix

P =

(
1/2 1/2

−i/2 i/2

)
with P−1 =

(
1 i

1 −i

)
.

▹

the matrix representing D�Θαβ becomes




P−1 · · · 0

...
. . .

...

0 · · · P−1







∂(u1, v1)

∂(x1, y1)
· · · ∂(u1, v1)

∂(xn, yn)
...

. . .
...

∂(un, vn)

∂(x1, y1)
· · · ∂(un, vn)

∂(xn, yn)







P · · · 0

...
. . .

...

0 · · · P




=

=




∂ �Θ1

∂z1
0

0
∂ �Θ1

∂z1

· · ·

∂ �Θ1

∂zn
0

0
∂ �Θ1

∂zn

...
. . .

...

∂ �Θn

∂z1
0

0
∂ �Θn

∂z1

· · ·

∂ �Θn

∂zn
0

0
∂ �Θn

∂zn




.

Now, changing from the basis

{
∂

∂z1
(z),

∂

∂z̄1
(z), . . . ,

∂

∂zn
(z),

∂

∂z̄n
(z)

}

to the basis

{
∂

∂z1
(z), . . .

∂

∂zn
(z), . . . ,

∂

∂z̄1
(z),

∂

∂z̄n
(z)

}
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is a real basis of TpM (exercise).

Complexify TpM , that is, TpM
C = TpM ⊗C which means: simply allow multiplication

by complex numbers. This is a C-vector space with dimC TpM
C = 2n. For p ∈ Uα, choose

for TpM
C the basis {

∂

∂zα1
(p),

∂

∂z̄α1
(p), . . . ,

∂

∂zαn
(p),

∂

∂z̄αn
(p)

}

where

∂

∂zαk
(p) =

1

2

(
∂

∂xαk
(p)− i

∂

∂yαk
(p)

)
and

∂

∂z̄αk
(p) =

1

2

(
∂

∂xαk
(p) + i

∂

∂yαk
(p)

)
(24)

Let’s examine changes of coordinates (22) in more detail. Set

�Θαβ = φα ◦ φ−1
β

and write

�Θαβ(x1, y1, . . . , xn, yn) = (u1, v1, . . . , un, vn)

(real coordinates). The derivative of �Θαβ is given by the matrix

D�Θαβ =




∂(u1, v1)

∂(x1, y1)
· · · ∂(un, vn)

∂(xn, yn)
...

. . .
...

∂(un, vn)

∂(x1, y1)
· · · ∂(un, vn)

∂(xn, yn)




where

∂(uj , vj)

∂(xk, yk)
=




∂uj
∂xk

∂uj
∂yk

∂vj
∂xk

∂vj
∂yk


 , 1 ≤ j, k ≤ n.

Now write �Θαβ = (�Θ1, . . . , �Θn) where �Θj = uj + ivj . Changing from the basis

{
∂

∂x1
(z),

∂

∂y1
(z), . . . ,

∂

∂xn
(z),

∂

∂yn
(z)

}

to the basis {
∂

∂z1
(z),

∂

∂z̄1
(z), . . . ,

∂

∂zn
(z),

∂

∂z̄n
(z)

}
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Exercise 10. Show that the change from the basis {∂/∂xj , ∂/∂yj} to the basis {∂/∂zj , ∂/∂z̄j}
is given by the matrix

P =

(
1/2 1/2

−i/2 i/2

)
with P−1 =

(
1 i

1 −i

)
.

▹

the matrix representing D�Θαβ becomes




P−1 · · · 0

...
. . .

...

0 · · · P−1







∂(u1, v1)

∂(x1, y1)
· · · ∂(u1, v1)

∂(xn, yn)
...

. . .
...

∂(un, vn)

∂(x1, y1)
· · · ∂(un, vn)

∂(xn, yn)







P · · · 0

...
. . .

...

0 · · · P




=

=




∂ �Θ1

∂z1
0

0
∂ �Θ1

∂z1

· · ·

∂ �Θ1

∂zn
0

0
∂ �Θ1

∂zn

...
. . .

...

∂ �Θn

∂z1
0

0
∂ �Θn

∂z1

· · ·

∂ �Θn

∂zn
0

0
∂ �Θn

∂zn




.

Now, changing from the basis

{
∂

∂z1
(z),

∂

∂z̄1
(z), . . . ,

∂

∂zn
(z),

∂

∂z̄n
(z)

}

to the basis

{
∂

∂z1
(z), . . .

∂

∂zn
(z), . . . ,

∂

∂z̄1
(z),

∂

∂z̄n
(z)

}

VI Escuela Doctoral Intercontinental de Matemáticas PUCP - UVA 65
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the matrix above becomes




∂ �Θ1

∂z1
· · · ∂ �Θ1

∂zn

...
. . .

...

∂ �Θn

∂z1
· · · ∂ �Θn

∂zn

0 · · · 0

...
. . .

...

0 · · · 0

0 · · · 0

...
. . .

...

0 · · · 0

∂ �Θ1

∂z1
· · · ∂ �Θ1

∂zn

...
. . .

...

∂ �Θn

∂z1
· · · ∂ �Θn

∂zn




,

so that the derivative D�Θαβ has the matrix

D�Θαβ =

(
Θαβ 0

0 Θαβ

)

where

Θαβ =

(
∂ �Θi

∂zj

)

1≤i,j≤n

Hence,

detD�Θαβ = detΘαβ detΘαβ = | detΘαβ |2 > 0. (25)

This means that complex manifolds are (naturally) orientable. For the definition of orien-

tability see [5].

We use this last basis to decompose TpM
C into 2 subspaces:

T ′
pM =

⟨
∂

∂z1
(p), . . .

∂

∂zn
(p)

⟩

C
(26)

the holomorphic tangent space and

T ′′
pM =

⟨
∂

∂z̄1
(p), . . . ,

∂

∂z̄n
(p)

⟩

C
(27)
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the anti-holomorphic tangent space, so

TpM
C = T ′

pM ⊕ T ′′
pM. (28)

The real tangent bundle of M , TM , is the union TM =
∪

p∈M TpM . Now, in local

coordinates, since a tangent vector to M at a point is identified with a vector in R2n,

TUα =
∪

p∈Uα

TpM = {(p, vα) : p ∈ Uα, vα ∈ R2n},

and we conclude that TUα has a product structure Uα × R2n. Hence,

TM =
∪
α

TUα =
∪
α

Uα × R2n,

where, for p ∈ Uα ∩ Uβ , (p, vα) e (p, vβ) are the same point of TM if, and only if,

vα = D(φα ◦ φ−1
β )(φβ(p))vβ . (29)

It follows that TM is a real analytic manifold obtained by gluing the Uα ×R2n by means

of the identification given in (29). The changes of coordinates, or transition functions for

TM are given by

Φαβ = (φα ◦ φ−1
β , D(φα ◦ φ−1

β )). (30)

Also, since the projections Uα × R2n πα−→ Uα and Uβ × R2n πβ−→ Uβ coincide in the inter-

section Uα × R2n ∩ Uβ × R2n, the projection π : TM → M given locally by (p, vα) �→ p is

well defined.

Since TMC = TM ⊗ C we deduce from (28) a decomposition

TMC = T ′M ⊕ T ′′M (31)

where T ′M is the holomorphic tangent bundle of M and T ′′M is the anti-holomorphic

tangent bundle of M . The transition functions of T ′M are

(φα ◦ φ−1
β ,Θαβ)

and those of T ′′M

(φα ◦ φ−1
β ,Θαβ).

If TM∗ is the real cotangent bundle then TMC∗ = T ′M∗⊕ T ′′M∗ are the corresponding

cotangent bundles, with transition functions given respectively by
(
φα ◦ φ−1

β ,
(
(Θαβ ⊕Θαβ)

T
)−1

)
,
(
φα ◦ φ−1

β , (ΘT
αβ)

−1
)
,

(
φα ◦ φ−1

β , (Θ
T
αβ)

−1
)
.
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the matrix above becomes




∂ �Θ1

∂z1
· · · ∂ �Θ1

∂zn

...
. . .

...

∂ �Θn

∂z1
· · · ∂ �Θn

∂zn

0 · · · 0

...
. . .

...

0 · · · 0

0 · · · 0

...
. . .

...

0 · · · 0

∂ �Θ1

∂z1
· · · ∂ �Θ1

∂zn

...
. . .

...

∂ �Θn

∂z1
· · · ∂ �Θn

∂zn




,

so that the derivative D�Θαβ has the matrix

D�Θαβ =

(
Θαβ 0

0 Θαβ

)

where

Θαβ =

(
∂ �Θi

∂zj

)

1≤i,j≤n

Hence,

detD�Θαβ = detΘαβ detΘαβ = | detΘαβ |2 > 0. (25)

This means that complex manifolds are (naturally) orientable. For the definition of orien-

tability see [5].

We use this last basis to decompose TpM
C into 2 subspaces:

T ′
pM =

⟨
∂

∂z1
(p), . . .

∂

∂zn
(p)

⟩

C
(26)

the holomorphic tangent space and

T ′′
pM =

⟨
∂

∂z̄1
(p), . . . ,

∂

∂z̄n
(p)

⟩

C
(27)
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the anti-holomorphic tangent space, so

TpM
C = T ′

pM ⊕ T ′′
pM. (28)

The real tangent bundle of M , TM , is the union TM =
∪

p∈M TpM . Now, in local

coordinates, since a tangent vector to M at a point is identified with a vector in R2n,

TUα =
∪

p∈Uα

TpM = {(p, vα) : p ∈ Uα, vα ∈ R2n},

and we conclude that TUα has a product structure Uα × R2n. Hence,

TM =
∪
α

TUα =
∪
α

Uα × R2n,

where, for p ∈ Uα ∩ Uβ , (p, vα) e (p, vβ) are the same point of TM if, and only if,

vα = D(φα ◦ φ−1
β )(φβ(p))vβ . (29)

It follows that TM is a real analytic manifold obtained by gluing the Uα ×R2n by means

of the identification given in (29). The changes of coordinates, or transition functions for

TM are given by

Φαβ = (φα ◦ φ−1
β , D(φα ◦ φ−1

β )). (30)

Also, since the projections Uα × R2n πα−→ Uα and Uβ × R2n πβ−→ Uβ coincide in the inter-

section Uα × R2n ∩ Uβ × R2n, the projection π : TM → M given locally by (p, vα) �→ p is

well defined.

Since TMC = TM ⊗ C we deduce from (28) a decomposition

TMC = T ′M ⊕ T ′′M (31)

where T ′M is the holomorphic tangent bundle of M and T ′′M is the anti-holomorphic

tangent bundle of M . The transition functions of T ′M are

(φα ◦ φ−1
β ,Θαβ)

and those of T ′′M

(φα ◦ φ−1
β ,Θαβ).

If TM∗ is the real cotangent bundle then TMC∗ = T ′M∗⊕ T ′′M∗ are the corresponding

cotangent bundles, with transition functions given respectively by
(
φα ◦ φ−1

β ,
(
(Θαβ ⊕Θαβ)

T
)−1

)
,
(
φα ◦ φ−1

β , (ΘT
αβ)

−1
)
,

(
φα ◦ φ−1

β , (Θ
T
αβ)

−1
)
.
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Let f : Mn → Nn be a holomorphic map, see (23). The matrix of the derivative

Df(p) : TpM
C → Tf(p)N

C

with respect to the bases
{

∂

∂z1
(p), . . .

∂

∂zn
(p), . . . ,

∂

∂z̄1
(p),

∂

∂z̄n
(p)

}

of TpM
C and

{
∂

∂z′1
(f(p)), . . .

∂

∂z′n
(f(p)), . . . ,

∂

∂z̄′1
(f(p)),

∂

∂z̄′n
(f(p))

}

of Tf(p)N
C is given by

Df(p) =




∂fi
∂zj

(p) 0

0
∂fi
∂zj

(p).




In particular, if Df(p) is an isomorphism then,

detDf(p) =

����det
(
∂fi
∂zj

(p)

)����
2

> 0,

that is, holomorphic diffeomorphisms preserve orientations.

3.2.1. Examples

The most simple example of a complex manifold is Cn, n ≥ 1. We will digress on an

important example, that of the projective spaces.

The complex projective space of dimension n, Pn
C, is the quotient of Cn+1 \ {0} under

the identification

z ∼ w ⇐⇒ ∃λ ∈ C∗ such that z = λw.

The class of a point z is denoted by [z] or (z0 : z1 : · · · : zn) and the quotient map

Cn+1 → Pn
C is denoted by P. We provide Pn

C with the topology induced by P, which makes

it a compact space (exercise). Besides, Pn
C is a complex manifold with the atlas defined by

{Ui, φi}, i = 0, . . . , n, Ui = {[z] ∈ Pn
C : zi ̸= 0}, where φi : Ui → Cn is given by

φi(z0 : z1 : · · · : zn) =

(
z0
zi
, . . . ,

�zi
zi
, . . . ,

zn
zi

)
,
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where “ � ” means omission. To avoid heavy notation let us consider φ0 and φj . We have

φ0(z0 : z1 : · · · : zn) =

(
�1, z1

z0
, . . . ,

zn
z0

)
= (x1, . . . , xn),

φj(z0 : z1 : · · · : zn) =

(
z0
zj
, . . . ,

zj−1

zj
,�1, zj+1

zj
. . . ,

zn
zj

)

= (y1, . . . , yj ,�1, yj+1, . . . , yn).

Let U0j = U0 ∩ Uj . The change of coordinates U0j
φj ◦ φ0

−1

−−−−−−−−−−−→ U0j is given by

φj ◦ φ0
−1(x1, . . . , xn) =

(
1

xj
,
x1
xj

, . . . ,
xj−1

xj
,
xj+1

xj
, . . . ,

xn
xj

)
.

The derivative D(φj ◦ φ0
−1) = Θj0 : U0j → GL(n,C) is represented by the matrix

Θj0 =




0 0 . . . 0 − 1

x2j
0 . . . 0 0

1

xj
0 . . . 0 −x1

x2j
0 . . . 0 0

0
1

xj
. . . 0 −x2

x2j
0 . . . 0 0

...
...

...
...

...
...

...

0 0 . . . 0 −xn−1

x2j
0 . . .

1

xj
0

0 0 . . . 0 −xn
x2j

0 . . . 0
1

xj




. (32)

In particular, detΘj0 = (−1)j (1/xj)
n+1 = (−1)j (z0/zj)

n+1. More generally

D(φi ◦ φ−1
j ) = Θij satisfies detΘij = (−1)i+j (zj/zi)

n+1.

A piece of notation. When we take local coordinates in Ui = {zi ̸= 0} in Pn
C, that is,

(z0 : · · · : zi−1 : 1 : zi+1 : · · · : zn) we cover all of Pn
C except the set

{(z0 : · · · : zi−1 : 0 : zi+1 : · · · : zn) : zj ∈ C, j ̸= i} which is a Pn−1
C . This set is

called the hyperplane at infinity with respect to Ui.
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Let f : Mn → Nn be a holomorphic map, see (23). The matrix of the derivative

Df(p) : TpM
C → Tf(p)N

C

with respect to the bases
{

∂

∂z1
(p), . . .

∂

∂zn
(p), . . . ,

∂

∂z̄1
(p),

∂

∂z̄n
(p)

}

of TpM
C and

{
∂

∂z′1
(f(p)), . . .

∂

∂z′n
(f(p)), . . . ,

∂

∂z̄′1
(f(p)),

∂

∂z̄′n
(f(p))

}

of Tf(p)N
C is given by

Df(p) =




∂fi
∂zj

(p) 0

0
∂fi
∂zj

(p).




In particular, if Df(p) is an isomorphism then,

detDf(p) =

����det
(
∂fi
∂zj

(p)

)����
2

> 0,

that is, holomorphic diffeomorphisms preserve orientations.

3.2.1. Examples

The most simple example of a complex manifold is Cn, n ≥ 1. We will digress on an

important example, that of the projective spaces.

The complex projective space of dimension n, Pn
C, is the quotient of Cn+1 \ {0} under

the identification

z ∼ w ⇐⇒ ∃λ ∈ C∗ such that z = λw.

The class of a point z is denoted by [z] or (z0 : z1 : · · · : zn) and the quotient map

Cn+1 → Pn
C is denoted by P. We provide Pn

C with the topology induced by P, which makes

it a compact space (exercise). Besides, Pn
C is a complex manifold with the atlas defined by

{Ui, φi}, i = 0, . . . , n, Ui = {[z] ∈ Pn
C : zi ̸= 0}, where φi : Ui → Cn is given by

φi(z0 : z1 : · · · : zn) =

(
z0
zi
, . . . ,

�zi
zi
, . . . ,

zn
zi

)
,
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where “ � ” means omission. To avoid heavy notation let us consider φ0 and φj . We have

φ0(z0 : z1 : · · · : zn) =

(
�1, z1

z0
, . . . ,

zn
z0

)
= (x1, . . . , xn),

φj(z0 : z1 : · · · : zn) =

(
z0
zj
, . . . ,

zj−1

zj
,�1, zj+1

zj
. . . ,

zn
zj

)

= (y1, . . . , yj ,�1, yj+1, . . . , yn).

Let U0j = U0 ∩ Uj . The change of coordinates U0j
φj ◦ φ0

−1

−−−−−−−−−−−→ U0j is given by

φj ◦ φ0
−1(x1, . . . , xn) =

(
1

xj
,
x1
xj

, . . . ,
xj−1

xj
,
xj+1

xj
, . . . ,

xn
xj

)
.

The derivative D(φj ◦ φ0
−1) = Θj0 : U0j → GL(n,C) is represented by the matrix

Θj0 =




0 0 . . . 0 − 1

x2j
0 . . . 0 0

1

xj
0 . . . 0 −x1

x2j
0 . . . 0 0

0
1

xj
. . . 0 −x2

x2j
0 . . . 0 0

...
...

...
...

...
...

...

0 0 . . . 0 −xn−1

x2j
0 . . .

1

xj
0

0 0 . . . 0 −xn
x2j

0 . . . 0
1

xj




. (32)

In particular, detΘj0 = (−1)j (1/xj)
n+1 = (−1)j (z0/zj)

n+1. More generally

D(φi ◦ φ−1
j ) = Θij satisfies detΘij = (−1)i+j (zj/zi)

n+1.

A piece of notation. When we take local coordinates in Ui = {zi ̸= 0} in Pn
C, that is,

(z0 : · · · : zi−1 : 1 : zi+1 : · · · : zn) we cover all of Pn
C except the set

{(z0 : · · · : zi−1 : 0 : zi+1 : · · · : zn) : zj ∈ C, j ̸= i} which is a Pn−1
C . This set is

called the hyperplane at infinity with respect to Ui.
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3.3. Differential forms

This is a very brief description of differential forms. We urge the interested reader to

refer to [5].

Consider the canonical basis {e1, e2, . . . , en} of Rn (or Cn). The dual basis {dx1, dx2, . . . , dxn}
is defined by

dxi(ej) =



1, if i = j

0, if i ̸= j.

Let Ω∗ be the real (complex) algebra generated by dx1, dx2, . . . , dxn subjected to the

relations

dxi ∧ dxi = 0, dxi ∧ dxj = −dxj ∧ dxi if i ̸= j.

As a real (complex) vector space a basis of Ω∗ is given by

dxi(1 ≤ i ≤ n), dxi ∧ dxj(i < j), dxi ∧ dxj ∧ dxk(i < j < k), . . . , dx1 ∧ · · · ∧ dxn

Differential forms on Rn (Cn) are defined by

Ω∗(Rn) or Ω∗(Cn) = {functions} ⊗R or C Ω∗

and, to be more precise, differential forms of class Ck are the elements of

Ω∗
k(Rn) = Ck(Rn,R)⊗R Ω∗(Rn)

and similarly for Cn.

We have a grading of Ω∗(Rn) given by

Ω∗(Rn) =

n⊕
p=0

Ωp(Rn)

where Ωp(Rn) consists of the differential forms of degree p or p-forms.

Hence a p-form has an expression

∑
i1<···<ip

fi1,...,ip dxi1 ∧ dxi2 ∧ · · · ∧ dxip

which we note as

∑
I

fI dxI where I = {i1, . . . , in}, i1 < · · · < ip.
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Assume the coefficients of differential forms are of class Ck, k ≥ 1. The exterior differential

d is the operator

d : Ωp
k(R

n) −→ Ωp+1
k−1(R

n)

given by:

(i) On 0-forms f (functions), df =
n∑

i=1

∂f

∂xi
dxi.

(ii) On p-forms ω =
∑

fIdxI , dω =
∑

dfI ∧ dxI .

The wedge product ∧ of two forms is defined by: if ω =
∑

I fI dxI and η =
∑

J dxJ

then

ω ∧ η =
∑
I,J

fIgJ dxI ∧ dxJ

in this order.

As exercises, show that if ω is a p-form and η is a q-form then:

(i) ω ∧ η = (−1)pqη ∧ ω.

(ii) d(ω ∧ η) = dω ∧ η + (−1)pω ∧ dη.

(iii) d(dω) = 0, that is, d2 = 0.

Suppose now we have a C∞ map f : Rm −→ Rn. The pull-back of a p-form on Rn by

f is a p-form on Rm defined by

(i) For functions (0-forms) g, f∗(g) = g ◦ f .

(ii) For p-forms ω =
∑
I

gIdxI , f
∗(ω) =

∑
I

(gI ◦ f) dfI .

(iii) d commutes with f∗, that is, d(f∗ω) = f∗(dω) (exercise).

A form u is closed if du = 0 and exact if u = dv for some form v.

Finally, a cohomological complex K• =
⊕

q∈ZK
q is a collection of modules over a ring,

endowed with differentials, that is, linear maps dq : Kq −→ Kq+1 satisfying dq+1 ◦ dq = 0.
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3.3. Differential forms

This is a very brief description of differential forms. We urge the interested reader to

refer to [5].

Consider the canonical basis {e1, e2, . . . , en} of Rn (or Cn). The dual basis {dx1, dx2, . . . , dxn}
is defined by

dxi(ej) =



1, if i = j

0, if i ̸= j.

Let Ω∗ be the real (complex) algebra generated by dx1, dx2, . . . , dxn subjected to the

relations

dxi ∧ dxi = 0, dxi ∧ dxj = −dxj ∧ dxi if i ̸= j.

As a real (complex) vector space a basis of Ω∗ is given by

dxi(1 ≤ i ≤ n), dxi ∧ dxj(i < j), dxi ∧ dxj ∧ dxk(i < j < k), . . . , dx1 ∧ · · · ∧ dxn

Differential forms on Rn (Cn) are defined by

Ω∗(Rn) or Ω∗(Cn) = {functions} ⊗R or C Ω∗

and, to be more precise, differential forms of class Ck are the elements of

Ω∗
k(Rn) = Ck(Rn,R)⊗R Ω∗(Rn)

and similarly for Cn.

We have a grading of Ω∗(Rn) given by

Ω∗(Rn) =

n⊕
p=0

Ωp(Rn)

where Ωp(Rn) consists of the differential forms of degree p or p-forms.

Hence a p-form has an expression

∑
i1<···<ip

fi1,...,ip dxi1 ∧ dxi2 ∧ · · · ∧ dxip

which we note as

∑
I

fI dxI where I = {i1, . . . , in}, i1 < · · · < ip.
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Assume the coefficients of differential forms are of class Ck, k ≥ 1. The exterior differential

d is the operator

d : Ωp
k(R

n) −→ Ωp+1
k−1(R

n)

given by:

(i) On 0-forms f (functions), df =
n∑

i=1

∂f

∂xi
dxi.

(ii) On p-forms ω =
∑

fIdxI , dω =
∑

dfI ∧ dxI .

The wedge product ∧ of two forms is defined by: if ω =
∑

I fI dxI and η =
∑

J dxJ

then

ω ∧ η =
∑
I,J

fIgJ dxI ∧ dxJ

in this order.

As exercises, show that if ω is a p-form and η is a q-form then:

(i) ω ∧ η = (−1)pqη ∧ ω.

(ii) d(ω ∧ η) = dω ∧ η + (−1)pω ∧ dη.

(iii) d(dω) = 0, that is, d2 = 0.

Suppose now we have a C∞ map f : Rm −→ Rn. The pull-back of a p-form on Rn by

f is a p-form on Rm defined by

(i) For functions (0-forms) g, f∗(g) = g ◦ f .

(ii) For p-forms ω =
∑
I

gIdxI , f
∗(ω) =

∑
I

(gI ◦ f) dfI .

(iii) d commutes with f∗, that is, d(f∗ω) = f∗(dω) (exercise).

A form u is closed if du = 0 and exact if u = dv for some form v.

Finally, a cohomological complex K• =
⊕

q∈ZK
q is a collection of modules over a ring,

endowed with differentials, that is, linear maps dq : Kq −→ Kq+1 satisfying dq+1 ◦ dq = 0.
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The associated cocycle, coboundary and cohomology modules are defined respectively

by

Zq(K•) = ker dq , Zq(K•) ⊂ Kq

Bq(K•) = Im dq−1 , Bq(K•) ⊂ Zq(K•) ⊂ Kq

Hq(K•) = Zq(K•)/Bq(K•)

Let A0(M) be the C-algebra C∞(M,C) and Ap(M) the A0(M)-module of C∞ complex p-

forms on M . If M is a complex manifold, the De Rham complex of M is the cohomological

complex

A•
∞(M) =

⊕
q≥0

Aq
∞(M)

with differential d, the exterior derivative. We denote its cohomology groups by

Hq
DR(M,R) = Zq(M,R)/Bq(M,R).

A C∞ p-form ω on a complex manifold M is expressed, in local coordinates, as a

sum of terms of the types fIdxI , gJdyJ and hKd(x, y)K , where dxI = dxi1 ∧ dxi2 ∧
· · · ∧ dxip , dyJ = dyj1 ∧ dyj2 ∧ · · · ∧ dyjp , d(x, y)K is a product of p-forms of the types

dxm, dyn and fI , gJ , hK are complex valued functions. Now, dxi = (1/2)(dzi + dz̄i) and

dyi = (1/2i)(dzi−dz̄i). Substituting in the terms whose sum is ω, we deduce that a p-form

on M can be written as

ω =
∑

ki1,...,ir,j1,...,jsdzi1 ∧ · · · ∧ dzir ∧ dz̄j1 ∧ · · · ∧ dz̄js ,

which we abbreviate as ω =
∑

kI,JdzI ∧ dz̄J . We say that each term of this sum is a

p-form of type (r, s), r+s = p. The fact that a form is of type (r, s) doesn’t depend on the

coordinate system since TMC = T ′M ⊕ T ′′M (exercise). Besides, a p-form ω is expressed

in a unique way as a sum

ω = ω(p,0) + ω(p−1,1) + · · ·+ ω(0,p), (33)

where ω(r,s) is of type (r, s).

The decomposition (33) induces a decomposition

Ap(M) = A(p,0)(M)⊕A(p−1,1)(M)⊕ · · · ⊕ A(0,p)(M). (34)

The exterior differential d complexifies and gives d : Ap(M) → Ap+1(M), obeying the

usual properties. Now, given f ∈ A0(M) locally we have

df =
n∑

i=1

∂f

∂zi
dzi +

n∑
i=1

∂f

∂z̄i
dz̄i.
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Define

∂f =
n∑

i=1

∂f

∂zi
dzi and ∂f =

n∑
i=1

∂f

∂z̄i
dz̄i.

∂f and ∂f do not depend on the coordinate system.

Given ω(r,s) =
∑

ki1,...,ir,j1,...,jsdzi1 ∧ · · · ∧ dzir ∧ dz̄j1 ∧ · · · ∧ dz̄js put

∂ω(r,s) =
∑

∂ki1,...,ir,j1,...,js ∧ dzi1 ∧ · · · ∧ dzir ∧ dz̄j1 ∧ · · · ∧ dz̄js

a form of type (r + 1, s) and

∂ω(r,s) =
∑

∂ki1,...,ir,j1,...,js ∧ dzi1 ∧ · · · ∧ dzir ∧ dz̄j1 ∧ · · · ∧ dz̄js ,

of type (r, s+ 1). This gives

dω(r,s) = ∂ω(r,s) + ∂ω(r,s).

As d doesn’t depend on the local coordinate system, the same holds for ∂ and ∂. For an

arbitrary p-form ω =
∑

r+s=p
ω(r,s),

∂ω =
∑

r+s=p

∂ω(r,s) and ∂ω =
∑

r+s=p

∂ω(r,s).

We have d = ∂ + ∂ and

∂(ωp ∧ η) = ∂ωp ∧ η + (−1)pωp ∧ ∂η,

∂(ωp ∧ η) = ∂ωp ∧ η + (−1)pωp ∧ ∂η.

Besides,

∂∂ω(r,s) + ∂∂ω(r,s) + ∂∂ω(r,s) + ∂ ∂ω(r,s) = ddω(r,s) = 0.

By comparing the types of forms appearing in this equality we get

∂∂ = 0 , ∂∂ + ∂∂ = 0 , ∂ ∂ = 0.

A (p, 0)-form ω(p,0) =
∑

fi1,...,ipdzi1 ∧· · ·∧dzip is holomorphic if the coefficients fi1,...,ip
are holomorphic functions. In this case

∂ω =
∑

∂fi1,...,ip ∧ dzi1 ∧ · · · ∧ dzip = 0.
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The associated cocycle, coboundary and cohomology modules are defined respectively

by

Zq(K•) = ker dq , Zq(K•) ⊂ Kq

Bq(K•) = Im dq−1 , Bq(K•) ⊂ Zq(K•) ⊂ Kq

Hq(K•) = Zq(K•)/Bq(K•)

Let A0(M) be the C-algebra C∞(M,C) and Ap(M) the A0(M)-module of C∞ complex p-

forms on M . If M is a complex manifold, the De Rham complex of M is the cohomological

complex

A•
∞(M) =

⊕
q≥0

Aq
∞(M)

with differential d, the exterior derivative. We denote its cohomology groups by

Hq
DR(M,R) = Zq(M,R)/Bq(M,R).

A C∞ p-form ω on a complex manifold M is expressed, in local coordinates, as a

sum of terms of the types fIdxI , gJdyJ and hKd(x, y)K , where dxI = dxi1 ∧ dxi2 ∧
· · · ∧ dxip , dyJ = dyj1 ∧ dyj2 ∧ · · · ∧ dyjp , d(x, y)K is a product of p-forms of the types

dxm, dyn and fI , gJ , hK are complex valued functions. Now, dxi = (1/2)(dzi + dz̄i) and

dyi = (1/2i)(dzi−dz̄i). Substituting in the terms whose sum is ω, we deduce that a p-form

on M can be written as

ω =
∑

ki1,...,ir,j1,...,jsdzi1 ∧ · · · ∧ dzir ∧ dz̄j1 ∧ · · · ∧ dz̄js ,

which we abbreviate as ω =
∑

kI,JdzI ∧ dz̄J . We say that each term of this sum is a

p-form of type (r, s), r+s = p. The fact that a form is of type (r, s) doesn’t depend on the

coordinate system since TMC = T ′M ⊕ T ′′M (exercise). Besides, a p-form ω is expressed

in a unique way as a sum

ω = ω(p,0) + ω(p−1,1) + · · ·+ ω(0,p), (33)

where ω(r,s) is of type (r, s).

The decomposition (33) induces a decomposition

Ap(M) = A(p,0)(M)⊕A(p−1,1)(M)⊕ · · · ⊕ A(0,p)(M). (34)

The exterior differential d complexifies and gives d : Ap(M) → Ap+1(M), obeying the

usual properties. Now, given f ∈ A0(M) locally we have

df =
n∑

i=1

∂f

∂zi
dzi +

n∑
i=1

∂f

∂z̄i
dz̄i.
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Define

∂f =
n∑

i=1

∂f

∂zi
dzi and ∂f =

n∑
i=1

∂f

∂z̄i
dz̄i.

∂f and ∂f do not depend on the coordinate system.

Given ω(r,s) =
∑

ki1,...,ir,j1,...,jsdzi1 ∧ · · · ∧ dzir ∧ dz̄j1 ∧ · · · ∧ dz̄js put

∂ω(r,s) =
∑

∂ki1,...,ir,j1,...,js ∧ dzi1 ∧ · · · ∧ dzir ∧ dz̄j1 ∧ · · · ∧ dz̄js

a form of type (r + 1, s) and

∂ω(r,s) =
∑

∂ki1,...,ir,j1,...,js ∧ dzi1 ∧ · · · ∧ dzir ∧ dz̄j1 ∧ · · · ∧ dz̄js ,

of type (r, s+ 1). This gives

dω(r,s) = ∂ω(r,s) + ∂ω(r,s).

As d doesn’t depend on the local coordinate system, the same holds for ∂ and ∂. For an

arbitrary p-form ω =
∑

r+s=p
ω(r,s),

∂ω =
∑

r+s=p

∂ω(r,s) and ∂ω =
∑

r+s=p

∂ω(r,s).

We have d = ∂ + ∂ and

∂(ωp ∧ η) = ∂ωp ∧ η + (−1)pωp ∧ ∂η,

∂(ωp ∧ η) = ∂ωp ∧ η + (−1)pωp ∧ ∂η.

Besides,

∂∂ω(r,s) + ∂∂ω(r,s) + ∂∂ω(r,s) + ∂ ∂ω(r,s) = ddω(r,s) = 0.

By comparing the types of forms appearing in this equality we get

∂∂ = 0 , ∂∂ + ∂∂ = 0 , ∂ ∂ = 0.

A (p, 0)-form ω(p,0) =
∑

fi1,...,ipdzi1 ∧· · ·∧dzip is holomorphic if the coefficients fi1,...,ip
are holomorphic functions. In this case

∂ω =
∑

∂fi1,...,ip ∧ dzi1 ∧ · · · ∧ dzip = 0.
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Reciprocally ∂ω(p,0) = 0 implies that the coefficients of ω are holomorphic functions.

Hence, for holomorphic forms we have ∂ω = dω.

Lastly, a real manifold M is orientable in case it admits an atlas with all transition

maps φα◦φ−1
β with positive jacobian determinant. Suppose M is oriented by such an atlas.

If u(x) = g(x1, . . . , xm) dx1 ∧ · · · ∧ dxm is a continuous m-form on M , where m = dimRM

and with compact support in a coordinate system, then we define

∫

M
u =

∫

Rm

g dx1 . . . dxm.

This is independent of the coordinate system (orientability). If u has compact support, we

extend this definition of
∫
M u by means of a partition of unity. A manifold is orientable if,

and only if, it admits a nowhere vanishing continuous m-form (exercise).

Now, if K ⊂ M is a compact set with piecewise C1 boundary ∂K, it’s possible to give

an orientation to ∂K in such a way that for any differential form of class C1 and of degree

m− 1 we have ∫

∂K
u =

∫

K
du.

This is Stokes formula.

Also, the orientation of a complex manifold of complex dimension n is determined by

its volume form, which locally reads:

dx1 ∧ dy1 ∧ · · · ∧ dxn ∧ dyn =

(
i

2

)n

dz1 ∧ dz̄1 ∧ · · · ∧ dzn ∧ dz̄n.

3.3.1. Remarks on Poincaré duality

We recall very briefly Poincaré’s duality [5].

If M is a compact complex manifold of dimension n let us denote by Hs
q (M,Z) and

Hq
s (M,Z) the q-th singular homology group and the q-th singular cohomology group of

M with integer coefficients, respectively (refer to [10] for the singular theory). Poincaré’s

duality theorem states that

Hq
s (M,Z) ∼= Hs

2n−q(M,Z). (35)

In general, this isomorphism no longer exists if M is not compact. In this case we must

bring in the singular cohomology with compact support, defined as follows: the compact

subsets of M are partially ordered by inclusion (K ≼ K ′ if and only if K ⊆ K ′). The
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relative cohomology groups Hq
s (M,M \K) make up an inductive system indexed by the

compact subsets of M , with Hq
s (M,M \K) −→ Hq

s (M,M \K ′) induced by inclusion. Take

the direct limit and define

Hq
sc(M,Z) =

ĺım−−−−−−−−−−→
K compact

Hq
s (M,M \K). (36)

If M is compact we have Hq
sc(M,Z) = Hq

s (M,Z). With this procedure Poincaré’s duality

now reads:

Hq
sc(M,Z) ∼= Hs

2n−q(M,Z). (37)

Tensorizing by C and invoking the Universal Coefficient theorem we obtain

Hq
sc(M,C) ∼= Hs

2n−q(M,C). (38)

On the other hand we have two de Rham cohomologies, the one with closed forms,

H∗
DR(M,C), and the one with closed forms with compact support, H∗

cDR(M,C). They
obviously coincide in case M is compact. Under certain conditions on M (existence of a

good cover) both cohomologies are finite dimensional and Poincaré’s duality reads:

Hq
DR(M,C) ∼=

(
H2n−q

cDR (M,C)
)∗

. (39)

This result is obtained by showing that the bilinear map

Hq
DR(M,C) × H2n−q

cDR (M,C) −→ C

(ω, η) �−→
∫

M
ω ∧ η

(40)

is non-degenerate.

We have the de Rham theorem ([5]-théorème 17’):

H2n−q
sc (M,C) ∼= Hq

DR(M,C), (41)

from which it follows that, since the vector space H2n−q
cDR (M,C) is finite dimensional,

H2n−q
sc (M,C) ∼= H2n−q

cDR (M,C), (42)

where this isomorphism is not natural since choices of bases are involved. From (38) we

get

Hs
q (M,C) ∼= H2n−q

cDR (M,C) ∼= H2n−q
DR (M,C) (43)

where the second isomorphism occurs when M is compact.
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Reciprocally ∂ω(p,0) = 0 implies that the coefficients of ω are holomorphic functions.

Hence, for holomorphic forms we have ∂ω = dω.

Lastly, a real manifold M is orientable in case it admits an atlas with all transition

maps φα◦φ−1
β with positive jacobian determinant. Suppose M is oriented by such an atlas.

If u(x) = g(x1, . . . , xm) dx1 ∧ · · · ∧ dxm is a continuous m-form on M , where m = dimRM

and with compact support in a coordinate system, then we define

∫

M
u =

∫

Rm

g dx1 . . . dxm.

This is independent of the coordinate system (orientability). If u has compact support, we

extend this definition of
∫
M u by means of a partition of unity. A manifold is orientable if,

and only if, it admits a nowhere vanishing continuous m-form (exercise).

Now, if K ⊂ M is a compact set with piecewise C1 boundary ∂K, it’s possible to give

an orientation to ∂K in such a way that for any differential form of class C1 and of degree

m− 1 we have ∫

∂K
u =

∫

K
du.

This is Stokes formula.

Also, the orientation of a complex manifold of complex dimension n is determined by

its volume form, which locally reads:

dx1 ∧ dy1 ∧ · · · ∧ dxn ∧ dyn =

(
i

2

)n

dz1 ∧ dz̄1 ∧ · · · ∧ dzn ∧ dz̄n.

3.3.1. Remarks on Poincaré duality

We recall very briefly Poincaré’s duality [5].

If M is a compact complex manifold of dimension n let us denote by Hs
q (M,Z) and

Hq
s (M,Z) the q-th singular homology group and the q-th singular cohomology group of

M with integer coefficients, respectively (refer to [10] for the singular theory). Poincaré’s

duality theorem states that

Hq
s (M,Z) ∼= Hs

2n−q(M,Z). (35)

In general, this isomorphism no longer exists if M is not compact. In this case we must

bring in the singular cohomology with compact support, defined as follows: the compact

subsets of M are partially ordered by inclusion (K ≼ K ′ if and only if K ⊆ K ′). The
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relative cohomology groups Hq
s (M,M \K) make up an inductive system indexed by the

compact subsets of M , with Hq
s (M,M \K) −→ Hq

s (M,M \K ′) induced by inclusion. Take

the direct limit and define

Hq
sc(M,Z) =

ĺım−−−−−−−−−−→
K compact

Hq
s (M,M \K). (36)

If M is compact we have Hq
sc(M,Z) = Hq

s (M,Z). With this procedure Poincaré’s duality

now reads:

Hq
sc(M,Z) ∼= Hs

2n−q(M,Z). (37)

Tensorizing by C and invoking the Universal Coefficient theorem we obtain

Hq
sc(M,C) ∼= Hs

2n−q(M,C). (38)

On the other hand we have two de Rham cohomologies, the one with closed forms,

H∗
DR(M,C), and the one with closed forms with compact support, H∗

cDR(M,C). They
obviously coincide in case M is compact. Under certain conditions on M (existence of a

good cover) both cohomologies are finite dimensional and Poincaré’s duality reads:

Hq
DR(M,C) ∼=

(
H2n−q

cDR (M,C)
)∗

. (39)

This result is obtained by showing that the bilinear map

Hq
DR(M,C) × H2n−q

cDR (M,C) −→ C

(ω, η) �−→
∫

M
ω ∧ η

(40)

is non-degenerate.

We have the de Rham theorem ([5]-théorème 17’):

H2n−q
sc (M,C) ∼= Hq

DR(M,C), (41)

from which it follows that, since the vector space H2n−q
cDR (M,C) is finite dimensional,

H2n−q
sc (M,C) ∼= H2n−q

cDR (M,C), (42)

where this isomorphism is not natural since choices of bases are involved. From (38) we

get

Hs
q (M,C) ∼= H2n−q

cDR (M,C) ∼= H2n−q
DR (M,C) (43)

where the second isomorphism occurs when M is compact.
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3.4. Vector bundles

In what follows, by a topological space we mean a connected Hausdorff space with

countable basis.

Definition 25. Let X be a topological space. A real vector bundle of rank n over X is a

topological space E equiped with a continuous projection E
π−→ X satisfying:

(i) π−1(x) := Ex (the fiber of E over x ∈ X) is a real vector space of dimension n,

∀x ∈ X.

(ii) There exist an open covering of X, X =
∪

α∈A
Uα, and homeomorphisms

Θα : π−1(Uα) −→ Uα × Rn

such that ∀α ∈ A, if x ∈ Uα then

Θαx : Ex −→ {x} × Rn ∼= Rn (44)

is an isomorphism of real vector spaces.

E is called the total space of the bundle, X is called the base and Θα are the local

trivializations of E.

Definition 26. A section of E
π−→ X is a continuous map s : X → E such that

(π ◦ s)(x) = x ∀x ∈ X (45)

that is, s(x) ∈ Ex.

Example 27. The trivial bundle over X, Rn, is defined by

Rn = X × Rn

↓ π

X

where π(x, v) = x. If f : X
C0

−→ Rn, then its graph s(x) = (x, f(x)) is a section of Rn.

Conversely, a section s : X → Rn defines a function f : X
C0

−→ Rn.

Example 28. TM e TM∗ are vector bundles. Sections of these bundles are vector fields

and differential 1-forms, respectively.
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If s : X → E is a section of E, then

(Θα ◦ s|Uα) : Uα −→ Uα × Rn

x �−→ Θα(s(x)) = (x, Sα(x))

is the graph of Sα : Uα → Rn. Hence, a section is locally a function with values in Rn.

Let E
π−→ X be a vector bundle of rank n, {Uα} a trivializing open cover, and {Θα}

local trivilizations of E. Given x ∈ Uα, the map Θαx : Ex → Rn is the restriction to Ex of

the map Θα : π−1(Uα) → Rn. Denoting by Uαβ = Uα ∩ Uβ , we define

Θαβ : Uαβ −→ GL(n,R) by Θαβ(x) = ΘαxΘ
−1
β x. (46)

Diagramatically:

Uαβ × Rn
Θβ←− π−1(Uαβ)

Θα−→ Uαβ × Rn

(x, v) |−−−−−−−−−−−−→ (x,Θαβ(x)v).

The Θαβ are continuous and satisfy the cocycle relation (product in GL(n,R))

ΘαβΘβ γΘγ α = I in Uαβ γ and Θαβ = Θ−1
β α. (47)

The Θαβ are called the transition functions of E. Remark that, if s is a section of E

then

Θαβ Sβ = Sα. (48)

Definition 29. Let E and F be vector bundles over X. A morphism φ : E → F is a

continuous map such that the diagram

E
φ−→ F

πE ↓ ↓ πF

X
Id−→ X

commutes and φ|Ex
: Ex → Fx is a linear map ∀x ∈ X. If φ is a bijection and φ−1 is a

morphism, then φ is called an isomorphism.

Let’s consider this definition in more detail. Suppose {Uα} is an open covering which

trivializes both E and F . Let {Θα} and {ηα} be the trivializations of E and F , respectively.

If φ is a morphism from E to F , then φ induces φα : Uα × Rn → Uα × Rm given by
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3.4. Vector bundles

In what follows, by a topological space we mean a connected Hausdorff space with

countable basis.

Definition 25. Let X be a topological space. A real vector bundle of rank n over X is a

topological space E equiped with a continuous projection E
π−→ X satisfying:

(i) π−1(x) := Ex (the fiber of E over x ∈ X) is a real vector space of dimension n,

∀x ∈ X.

(ii) There exist an open covering of X, X =
∪

α∈A
Uα, and homeomorphisms

Θα : π−1(Uα) −→ Uα × Rn

such that ∀α ∈ A, if x ∈ Uα then

Θαx : Ex −→ {x} × Rn ∼= Rn (44)

is an isomorphism of real vector spaces.

E is called the total space of the bundle, X is called the base and Θα are the local

trivializations of E.

Definition 26. A section of E
π−→ X is a continuous map s : X → E such that

(π ◦ s)(x) = x ∀x ∈ X (45)

that is, s(x) ∈ Ex.

Example 27. The trivial bundle over X, Rn, is defined by

Rn = X × Rn

↓ π

X

where π(x, v) = x. If f : X
C0

−→ Rn, then its graph s(x) = (x, f(x)) is a section of Rn.

Conversely, a section s : X → Rn defines a function f : X
C0

−→ Rn.

Example 28. TM e TM∗ are vector bundles. Sections of these bundles are vector fields

and differential 1-forms, respectively.
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If s : X → E is a section of E, then

(Θα ◦ s|Uα) : Uα −→ Uα × Rn

x �−→ Θα(s(x)) = (x, Sα(x))

is the graph of Sα : Uα → Rn. Hence, a section is locally a function with values in Rn.

Let E
π−→ X be a vector bundle of rank n, {Uα} a trivializing open cover, and {Θα}

local trivilizations of E. Given x ∈ Uα, the map Θαx : Ex → Rn is the restriction to Ex of

the map Θα : π−1(Uα) → Rn. Denoting by Uαβ = Uα ∩ Uβ , we define

Θαβ : Uαβ −→ GL(n,R) by Θαβ(x) = ΘαxΘ
−1
β x. (46)

Diagramatically:

Uαβ × Rn
Θβ←− π−1(Uαβ)

Θα−→ Uαβ × Rn

(x, v) |−−−−−−−−−−−−→ (x,Θαβ(x)v).

The Θαβ are continuous and satisfy the cocycle relation (product in GL(n,R))

ΘαβΘβ γΘγ α = I in Uαβ γ and Θαβ = Θ−1
β α. (47)

The Θαβ are called the transition functions of E. Remark that, if s is a section of E

then

Θαβ Sβ = Sα. (48)

Definition 29. Let E and F be vector bundles over X. A morphism φ : E → F is a

continuous map such that the diagram

E
φ−→ F

πE ↓ ↓ πF

X
Id−→ X

commutes and φ|Ex
: Ex → Fx is a linear map ∀x ∈ X. If φ is a bijection and φ−1 is a

morphism, then φ is called an isomorphism.

Let’s consider this definition in more detail. Suppose {Uα} is an open covering which

trivializes both E and F . Let {Θα} and {ηα} be the trivializations of E and F , respectively.

If φ is a morphism from E to F , then φ induces φα : Uα × Rn → Uα × Rm given by

VI Escuela Doctoral Intercontinental de Matemáticas PUCP - UVA 77
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Uα × Rn Θα←− π−1
E (Uα)

φα ↓ ↓ φ

Uα × Rm ηα←− π−1
F (Uα)

φα = ηα ◦ φ ◦Θ−1
α .

Now, φα is of the form φα(x, v) = (x, aα(x)v). Hence aα : Uα
C0

−→ L(Rn,Rm) satisfies

ηαβaβ = aαΘαβ ∀ α, β. (49)

Indeed, by the diagram

Uαβ × Rn
Θβ←− π−1

E (Uαβ)
Θα−→ Uαβ × Rn

φβ ↓ ↓ φ ↓ φα

Uαβ × Rm
ηβ←− π−1

F (Uαβ)
ηα−→ Uαβ × Rm

we get

φβ(x, v) = ηβ ◦ η−1
α ◦ φα ◦Θα ◦Θ−1

β (x, v)

=⇒ ηα ◦ η−1
β ◦ φβ(x, v) = φα ◦Θα ◦Θ−1

β (x, v)

=⇒ (x, ηαβ(x)aβ(x)v) = (x, aα(x)Θαβ(x)v).

Conversely, a family of maps aα : Uα
C0

−→ L(Rn,Rm) determines a morphism from E

to F provided

ηαβaβ = aαΘαβ in Uαβ , ∀α, β.

Remark that E is isomorphic to the trivial bundle Rn if, and only if, there exist

aα : Uα
C0

−→ GL(n,R) such that aβ = aαΘαβ in Uαβ , ∀α, β.

Exercise 11. This exercise gives an alternative description of vector bundles. Let {Uα}
be an open cover of X. Suppose we are given a family of continuous functions, defined in

Uαβ , Θαβ : Uαβ → GL(n,R) and satisfying ΘαβΘβ γΘγ α = I in Uαβ γ and Θαβ = Θ−1
β α

in Uαβ (remark that Θαα = I). Set F =
⨿
α∈A

Uα × Rn (disjoint union with the obviuos
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topology) and define the following equivalence relation in F :

(α, x, u) ∼ (β, y, v) ⇐⇒ x = y , Θαβ(x)v = u and Uαβ ̸= ∅.

Show that the quotient F/ ∼ has the structure of a real vector bundle of rank n over X,

unique up to isomorphism, whose transition functions are the Θαβ . ▹

Usually bundles are constructed from a family of transition functions, as in the above

exercise.

In all that was done above, if we change R by C we obtain the notion of a complex

vector bundle. Besides, if X is a complex manifold and the trivializations are of class C∞

or are holomorphic, then we will have C∞ or holomorphic vector bundles.

3.4.1. Tensor products

If E and E′ are vector bundles over X, of ranks n and m respectively, the tensor

product E⊗E′ is the bundle whose fiber over x ∈ X is Ex ⊗E′
x. The transition functions

of E ⊗ E′ are

Θαβ(x)⊗Θ′
αβ(x) : Rn ⊗ Rm −→ Rn ⊗ Rm.

In case E and E′ have rank 1, then these transition cocycles are simply the product

ΘαβΘ
′
αβ .

3.4.2. Subbundles, quotients and determinants

If E
π−→ X is a vector bundle, a subbundle consists of a subset F ⊂ E such that the

projection π and the local trivializations of E endow F with a real vector bundle structure.

Given a subbundle F of E, the fibers Fx are subspaces of Ex and the quotient bundle E/F

is obtained by taking the quotients Ex/Fx. More precisely, let {Uα} be a trivializing open

cover of E. We have a diagram

Uαβ × Rn
Θβ←− π−1(Uαβ)

Θα−→ Uαβ × Rn

↑ ↑ ↑

Uαβ × Rm
ηβ←− π−1

|F (Uαβ)
ηα−→ Uαβ × Rm,
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Uα × Rn Θα←− π−1
E (Uα)

φα ↓ ↓ φ

Uα × Rm ηα←− π−1
F (Uα)

φα = ηα ◦ φ ◦Θ−1
α .

Now, φα is of the form φα(x, v) = (x, aα(x)v). Hence aα : Uα
C0

−→ L(Rn,Rm) satisfies

ηαβaβ = aαΘαβ ∀ α, β. (49)

Indeed, by the diagram

Uαβ × Rn
Θβ←− π−1

E (Uαβ)
Θα−→ Uαβ × Rn

φβ ↓ ↓ φ ↓ φα

Uαβ × Rm
ηβ←− π−1

F (Uαβ)
ηα−→ Uαβ × Rm

we get

φβ(x, v) = ηβ ◦ η−1
α ◦ φα ◦Θα ◦Θ−1

β (x, v)

=⇒ ηα ◦ η−1
β ◦ φβ(x, v) = φα ◦Θα ◦Θ−1

β (x, v)

=⇒ (x, ηαβ(x)aβ(x)v) = (x, aα(x)Θαβ(x)v).

Conversely, a family of maps aα : Uα
C0

−→ L(Rn,Rm) determines a morphism from E

to F provided

ηαβaβ = aαΘαβ in Uαβ , ∀α, β.

Remark that E is isomorphic to the trivial bundle Rn if, and only if, there exist

aα : Uα
C0

−→ GL(n,R) such that aβ = aαΘαβ in Uαβ , ∀α, β.

Exercise 11. This exercise gives an alternative description of vector bundles. Let {Uα}
be an open cover of X. Suppose we are given a family of continuous functions, defined in

Uαβ , Θαβ : Uαβ → GL(n,R) and satisfying ΘαβΘβ γΘγ α = I in Uαβ γ and Θαβ = Θ−1
β α

in Uαβ (remark that Θαα = I). Set F =
⨿
α∈A

Uα × Rn (disjoint union with the obviuos
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topology) and define the following equivalence relation in F :

(α, x, u) ∼ (β, y, v) ⇐⇒ x = y , Θαβ(x)v = u and Uαβ ̸= ∅.

Show that the quotient F/ ∼ has the structure of a real vector bundle of rank n over X,

unique up to isomorphism, whose transition functions are the Θαβ . ▹

Usually bundles are constructed from a family of transition functions, as in the above

exercise.

In all that was done above, if we change R by C we obtain the notion of a complex

vector bundle. Besides, if X is a complex manifold and the trivializations are of class C∞

or are holomorphic, then we will have C∞ or holomorphic vector bundles.

3.4.1. Tensor products

If E and E′ are vector bundles over X, of ranks n and m respectively, the tensor

product E⊗E′ is the bundle whose fiber over x ∈ X is Ex ⊗E′
x. The transition functions

of E ⊗ E′ are

Θαβ(x)⊗Θ′
αβ(x) : Rn ⊗ Rm −→ Rn ⊗ Rm.

In case E and E′ have rank 1, then these transition cocycles are simply the product

ΘαβΘ
′
αβ .

3.4.2. Subbundles, quotients and determinants

If E
π−→ X is a vector bundle, a subbundle consists of a subset F ⊂ E such that the

projection π and the local trivializations of E endow F with a real vector bundle structure.

Given a subbundle F of E, the fibers Fx are subspaces of Ex and the quotient bundle E/F

is obtained by taking the quotients Ex/Fx. More precisely, let {Uα} be a trivializing open

cover of E. We have a diagram

Uαβ × Rn
Θβ←− π−1(Uαβ)

Θα−→ Uαβ × Rn

↑ ↑ ↑

Uαβ × Rm
ηβ←− π−1

|F (Uαβ)
ηα−→ Uαβ × Rm,
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where the vertical arrows are inclusions. Hence we have (x, v) �→ (x,Θαβ(x)v) and

(x, v) �→ (x, ηαβ(x)v). Now, ∀ v ∈ Rm these two maps coincide and so

Θαβ(x)|Rm = ηαβ(x). We conclude that Θαβ has the expression

Θαβ(x) =

(
ηαβ(x) ραβ(x)

0 ζαβ(x)

)
.

Consider a short exact sequence

0 → Rm T→ Rn → Rn/Rm → 0

(T linear). This allows us to define the quotient bundle E/F in the following manner: a

vector w ∈ Rn can be written as w = v + u, v ∈ Rm, u ∈ Rn−m. Then

Θαβ(x)(v, u) = (ηαβ(x)v + ραβ(x)u, ζαβ(x)u) and, as ηαβ(x)v + ραβ(x)u ∈ Rm, the class

of Θαβ(x)(v, u) in the quotient Rn/Rm equals the class of ζαβ(x)u. The vector bundle

E/F is defined by the transition cocycles ζαβ .

The determinant bundle of E is the bundle detE =
∧nE, whose fiber is

∧nEx. Its

transition cocycles are detΘαβ , from which it follows

detΘαβ = det ηαβ ⊗ det ζαβ ,

and we conclude

detE ∼= detF ⊗ detE/F.

Remark that we’ve obtained an isomorphism since in the above argument a choice of bases

of the spaces involved is implicit.

Exercise 12. If 0 −→ F
f−→ E

g−→ G −→ 0 is an exact sequence of vector bundles over

X, that is, 0 −→ Fx −→ Ex −→ Gx −→ 0 is exact ∀x ∈ X, then f identifies F with a

subbundle of E and g induces an isomorphism between E/F and G.

3.4.3. The Whitney sum

If E and E′ are vector bundles over X of ranks n and m respectively, their direct sum

E⊕E′ is the bundle overX whose fiber over each x ∈ X is Ex⊕E′
x. Local trivializations Θα

and Θ′
α of E and E′ (relative to the same open cover {Uα} ofX) induce local trivializations

of E ⊕ E′ by

Θα ⊕Θ′
α : π−1(Uα) → Uα × Rn ⊕ Rm.
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Hence, the transition cocycles of E ⊕ E′ are given by

(Θαβ ⊕Θ′
αβ)(x) =

(
Θαβ(x) 0

0 Θ′
αβ(x)

)
: Rn ⊕ Rm −→ Rn ⊕ Rm.

3.4.4. The dual bundle

Recall that a linear map f : V → W induces a linear map fT : W ∗ → V ∗ defined by

fT : W ∗ −→ V ∗

α �−→ fT (α) : V −→ R
v �−→ (α ◦ f)(v),

whose matrix is the transpose of the matrix representing f . If Θα : π−1(Uα) → Uα × Rn

is a local trivialization of E, then

(ΘT
α)

−1
: π−1(Uα) → Uα × Rn∗

is, by definition, a local trivialization of the dual bundle E∗. The transition cocycles are

(ΘT
α)

−1
ΘT

β =
(
(ΘT

β )
−1

ΘT
α

)−1
=

(
(ΘαΘ

−1
β )

T
)−1

=
(
ΘT

αβ

)−1
.

Once again, if E has rank 1, then the transition cocycles of E∗ are Θ−1
αβ .

3.4.5. Pull-back

Consider the diagram

E

↓ π

Y
f−→ X,

where f is continuous. f induces a bundle over Y , f−1E, called the pull-back of E via f .

As a set, f−1E is the fibered product Y ×X E ⊂ Y × E defined by

f−1E = {(y, e) : f(y) = π(e)}.

This is the only maximal subset of Y × E such that the following diagram commutes

Y × E ⊃ f−1E
p2−→ E

p1 ↓ ↓ π

Y
f−→ X

.
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where the vertical arrows are inclusions. Hence we have (x, v) �→ (x,Θαβ(x)v) and
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)
.
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X, that is, 0 −→ Fx −→ Ex −→ Gx −→ 0 is exact ∀x ∈ X, then f identifies F with a

subbundle of E and g induces an isomorphism between E/F and G.
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If E and E′ are vector bundles over X of ranks n and m respectively, their direct sum

E⊕E′ is the bundle overX whose fiber over each x ∈ X is Ex⊕E′
x. Local trivializations Θα

and Θ′
α of E and E′ (relative to the same open cover {Uα} ofX) induce local trivializations

of E ⊕ E′ by
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Hence, the transition cocycles of E ⊕ E′ are given by

(Θαβ ⊕Θ′
αβ)(x) =

(
Θαβ(x) 0

0 Θ′
αβ(x)

)
: Rn ⊕ Rm −→ Rn ⊕ Rm.

3.4.4. The dual bundle
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fT : W ∗ −→ V ∗
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whose matrix is the transpose of the matrix representing f . If Θα : π−1(Uα) → Uα × Rn

is a local trivialization of E, then

(ΘT
α)

−1
: π−1(Uα) → Uα × Rn∗

is, by definition, a local trivialization of the dual bundle E∗. The transition cocycles are

(ΘT
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)−1
=

(
(ΘαΘ

−1
β )

T
)−1

=
(
ΘT

αβ

)−1
.

Once again, if E has rank 1, then the transition cocycles of E∗ are Θ−1
αβ .

3.4.5. Pull-back

Consider the diagram

E

↓ π

Y
f−→ X,

where f is continuous. f induces a bundle over Y , f−1E, called the pull-back of E via f .

As a set, f−1E is the fibered product Y ×X E ⊂ Y × E defined by

f−1E = {(y, e) : f(y) = π(e)}.

This is the only maximal subset of Y × E such that the following diagram commutes

Y × E ⊃ f−1E
p2−→ E

p1 ↓ ↓ π

Y
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If E is trivial, E = X × Cn, then

f−1E = {(y, (x, v)) : x = f(y)} ∼= {(y, v) : y ∈ Y , v ∈ Cn} = Y × Cn.

Hence, by using the trivializations of E we deduce that the fiber of f−1E over y is isomorp-

hic to Ef(y). Besides, if we have a composition Z
g−→ Y

f−→ X, then (f◦g)−1E ∼= g−1f−1E.

Exercise 13. Determine the transition functions of f−1E.

3.5. Some examples of holomorphic vector bundles

3.5.1. [V ]

Let M be a compact complex manifold and V ⊂ M an analytic set of codimension 1.

Cover M by open sets Ui such that V is defined in Ui by fi
−1(0) (fi : Ui → C, holomorphic

and reduced). In Uij we have the relation fi = φijfj , where φij is holomorphic and vanishes

nowhere. The rank 1 vector bundle [V ] is defined by the transition functions φij = fi/fj

(recall Exercise 6). Remark that [V ] admits a holomorphic section sV defined by V . In

fact, on the trivializing open set Ui we have

Ui × C
φi

←−−−−−− [V ]|Ui

p1 ↘ ↙ π

Ui

and the section sV : Ui → [V ]|Ui
is defined by the graph of the function

fi, sV|Ui
(z) = φ−1

i (z, fi(z)). Moreover, the zeros of sV define V . Suppose now that, in

Ui, V is also defined by gi = 0. Then fi/gi does not vanish at any point in Ui and

βij =
gi
gj

=
fi
fj

fj
gj
fi
gi

= φij

fj
gj
fi
gi

,

that is (see (49)),
fi
gi
βij = φij

fj
gj

and we conclude that the bundle defined by the φij ’s is isomorphic to the bundle defined

by the βij ’s. Hence, the isomorphism class of the bundle [V ] is associated to V .
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An Introduction to Distributions and Currents

3.5.2. The tautological bundle O∗

Consider the trivial bundle Pn
C × Cn+1 π−→ Pn

C. The tautological or universal bundle is

the rank 1 subbundle consisting of the pairs ([w], z) ∈ Pn
C × Cn+1 such that z belongs to

the straight line defined by [w] (hence the reason for the term tautological):

O∗ = {([w], z) : ∃ t ∈ C such that z = tw}.

Recalling the definition of Pn
C in (3.2.1) we have, in the open set Ui,

O∗
|Ui

= {((z0 : · · · : zn), t(z0, . . . , zn)) ; t ∈ C} .

The transition cocycles are defined by

Uij × C
Θj←− O∗

|Uij

Θi−→ Uij × C
([z], t) |−−−−−−−−→ (x,Θij([z])t).

and, in Uij ,

(
z0
zj
, . . . ,

zi
zj
, . . . , 1, . . . ,

zn
zj

)
=

(
zi
zj

)(
z0
zi
, . . . , 1, . . . ,

zj
zi
, . . . ,

zn
zi

)

and hence,

Θij([z]) =
zi
zj

in Uij .

3.5.3. The hyperplane bundle O

Let H be a hyperplane in Pn
C, that is, H = {P (z) = 0}, where P : Cn+1 → C is

a polynomial of degree 1, P (0) = 0. By a linear change of coordinates we may assume

H = {z0 = 0}. In Ui, i ̸= 0, H is defined by fi = z0/zi = 0. The rank 1 bundle O, which

represents the isomorphism class of the bundles of the form [H] (see (3.5.1)), is defined by

the transition functions

φij =
fi
fj

=

z0
zi
z0
zj

=
zj
zi

in Uij .

Exercise 14. Show that any two hyperplanes define isomorphic bundles.
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If E is trivial, E = X × Cn, then

f−1E = {(y, (x, v)) : x = f(y)} ∼= {(y, v) : y ∈ Y , v ∈ Cn} = Y × Cn.

Hence, by using the trivializations of E we deduce that the fiber of f−1E over y is isomorp-

hic to Ef(y). Besides, if we have a composition Z
g−→ Y

f−→ X, then (f◦g)−1E ∼= g−1f−1E.

Exercise 13. Determine the transition functions of f−1E.

3.5. Some examples of holomorphic vector bundles

3.5.1. [V ]

Let M be a compact complex manifold and V ⊂ M an analytic set of codimension 1.

Cover M by open sets Ui such that V is defined in Ui by fi
−1(0) (fi : Ui → C, holomorphic

and reduced). In Uij we have the relation fi = φijfj , where φij is holomorphic and vanishes

nowhere. The rank 1 vector bundle [V ] is defined by the transition functions φij = fi/fj

(recall Exercise 6). Remark that [V ] admits a holomorphic section sV defined by V . In

fact, on the trivializing open set Ui we have

Ui × C
φi

←−−−−−− [V ]|Ui

p1 ↘ ↙ π

Ui

and the section sV : Ui → [V ]|Ui
is defined by the graph of the function

fi, sV|Ui
(z) = φ−1

i (z, fi(z)). Moreover, the zeros of sV define V . Suppose now that, in

Ui, V is also defined by gi = 0. Then fi/gi does not vanish at any point in Ui and

βij =
gi
gj

=
fi
fj

fj
gj
fi
gi

= φij

fj
gj
fi
gi

,

that is (see (49)),
fi
gi
βij = φij

fj
gj

and we conclude that the bundle defined by the φij ’s is isomorphic to the bundle defined

by the βij ’s. Hence, the isomorphism class of the bundle [V ] is associated to V .
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3.5.2. The tautological bundle O∗

Consider the trivial bundle Pn
C × Cn+1 π−→ Pn

C. The tautological or universal bundle is

the rank 1 subbundle consisting of the pairs ([w], z) ∈ Pn
C × Cn+1 such that z belongs to

the straight line defined by [w] (hence the reason for the term tautological):

O∗ = {([w], z) : ∃ t ∈ C such that z = tw}.

Recalling the definition of Pn
C in (3.2.1) we have, in the open set Ui,

O∗
|Ui

= {((z0 : · · · : zn), t(z0, . . . , zn)) ; t ∈ C} .

The transition cocycles are defined by

Uij × C
Θj←− O∗

|Uij

Θi−→ Uij × C
([z], t) |−−−−−−−−→ (x,Θij([z])t).

and, in Uij ,

(
z0
zj
, . . . ,
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zj
, . . . , 1, . . . ,
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zj

)
=

(
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zj

)(
z0
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, . . . , 1, . . . ,

zj
zi
, . . . ,
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)

and hence,

Θij([z]) =
zi
zj

in Uij .

3.5.3. The hyperplane bundle O

Let H be a hyperplane in Pn
C, that is, H = {P (z) = 0}, where P : Cn+1 → C is

a polynomial of degree 1, P (0) = 0. By a linear change of coordinates we may assume

H = {z0 = 0}. In Ui, i ̸= 0, H is defined by fi = z0/zi = 0. The rank 1 bundle O, which

represents the isomorphism class of the bundles of the form [H] (see (3.5.1)), is defined by

the transition functions

φij =
fi
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=
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=
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Notice that, by 3.4.4, O is the dual of O∗ since φij = Θ−1
ij . Now, given d ∈ Z the

bundle O(d) is defined by

O(d) =




O⊗d = O ⊗ · · · ⊗ O� �� �
d times

, if d ≥ 0,

O∗⊗−d = O∗ ⊗ · · · ⊗ O∗� �� �
−d times

, if d ≤ 0.

3.5.4. The canonical bundle KM

If M is a complex manifold, the canonical bundle KM of M is defined by

KM = (detT ′M)∗. In case M = Pn
C, since the transition cocycles of detT ′Pn

C are

detΘij = (−1)i+j

(
zj
zi

)n+1

,

we have

(−1)i detΘij =

(
zj
zi

)n+1

(−1)j

and, by (49), detT ′Pn
C is isomorphic to the bundle whose transition cocycles are (zj/zi)

n+1,

that is, detT ′Pn
C
∼= O(n+ 1). Hence,

KPn
C
∼= O(n+ 1)∗ ∼= O(−n− 1).

3.6. The canonical bundle KV

Suppose V �→ M is a compact submanifold of the complex manifold M . The normal

bundle NV of V in M is, by definition, the quotient

NV =
T ′M |V

T ′V
.

Hence, we have the short exact sequence

0 −→ T ′V −→ T ′M|V −→ NV −→ 0

and, by 3.4.2 , (detT ′M)|V ∼= detT ′V ⊗ detNV . But these are rank 1 vector bundles and

therefore

KV
∼= KM|V ⊗ detNV .

84 VI Escuela Doctoral Intercontinental de Matemáticas PUCP - UVA
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Suppose now that V has codimension 1. Then this last formula reads KV
∼= KM|V ⊗NV .

Take a trivializing open cover {Ui} common to all these bundles. Then, in Ui, V is defined

by fi = 0 (since it’s a submanifold of dimension n − 1) and [V ] is determined by the

transition cocycles φij = fi/fj (see (3.5.1)).

Now, in Uij , fi = φijfj , which gives dfi = fj dφij + φij dfj and, along V , dfi = φijdfj .

On the other hand, in Ui ∩ V , T ′V is defined as the kernel of dfi and hence dfi defines a

nowhere vanishing holomorphic section of the dual bundle N∗
V , since V is a submanifold.

Let ζi : π
−1(Ui ∩ V ) → Ui ∩ V × C be a local trivialization of N∗

V and put Si = ζidfi.

Then, ζ−1
i Si = φijζ

−1
j Sj , that is, Si = ζiζ

−1
j φijSj = ζijφijSj , and by (48) we have that

the dfi’s define a global nowhere vanishing holomorphic section of N∗
V ⊗ [V ]|V . This says

that N∗
V ⊗ [V ]|V is isomorphic to the trivial bundle and hence

NV
∼= [V ]|V .

From this we deduce the adjunction formula

KV
∼= KM|V ⊗ [V ]|V . (50)

Exercise 15. Let E be a holomorphic vector bundle of rank n over M . If E admits n

linearly independent holomorphic sections, then E is holomorphically isomorphic to the

trivial bundle Cn.

4. Currents

Let Aℓ
∞,c(Rn) = Aℓ

c(Rn) be the space of C∞ ℓ-forms on Rn with compact support. The

topological dual of An−q
c (Rn) is the space of currents of degree q, denoted Dq(Rn). This

means that Dq(Rn) is the space of continuous linear forms T on An−q
c (Rn).

For a good account on currents refer to [4].

Remark 30. The topological background necessary to treat currents is not elementary

and we will only say that the topology involved is based on seminorms. The topology in

Aℓ
∞,c(Rn) doesn’t make it a complete space.

We begin by giving some examples.

Example 31. Let Lqloc(R
n) be the space of q-forms u(x) =

∑
I uI(x)dxI whose coefficients

uI(x) are locally integrable. Then

Tu(ϕ) =

∫

Rn

u ∧ ϕ , ϕ ∈ An−q
c (Rn) (51)
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Notice that, by 3.4.4, O is the dual of O∗ since φij = Θ−1
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, if d ≤ 0.
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If M is a complex manifold, the canonical bundle KM of M is defined by

KM = (detT ′M)∗. In case M = Pn
C, since the transition cocycles of detT ′Pn

C are

detΘij = (−1)i+j

(
zj
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)n+1

,

we have

(−1)i detΘij =

(
zj
zi

)n+1

(−1)j

and, by (49), detT ′Pn
C is isomorphic to the bundle whose transition cocycles are (zj/zi)

n+1,

that is, detT ′Pn
C
∼= O(n+ 1). Hence,

KPn
C
∼= O(n+ 1)∗ ∼= O(−n− 1).

3.6. The canonical bundle KV

Suppose V �→ M is a compact submanifold of the complex manifold M . The normal

bundle NV of V in M is, by definition, the quotient

NV =
T ′M |V

T ′V
.

Hence, we have the short exact sequence

0 −→ T ′V −→ T ′M|V −→ NV −→ 0

and, by 3.4.2 , (detT ′M)|V ∼= detT ′V ⊗ detNV . But these are rank 1 vector bundles and

therefore

KV
∼= KM|V ⊗ detNV .
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Suppose now that V has codimension 1. Then this last formula reads KV
∼= KM|V ⊗NV .

Take a trivializing open cover {Ui} common to all these bundles. Then, in Ui, V is defined

by fi = 0 (since it’s a submanifold of dimension n − 1) and [V ] is determined by the

transition cocycles φij = fi/fj (see (3.5.1)).

Now, in Uij , fi = φijfj , which gives dfi = fj dφij + φij dfj and, along V , dfi = φijdfj .

On the other hand, in Ui ∩ V , T ′V is defined as the kernel of dfi and hence dfi defines a

nowhere vanishing holomorphic section of the dual bundle N∗
V , since V is a submanifold.

Let ζi : π
−1(Ui ∩ V ) → Ui ∩ V × C be a local trivialization of N∗

V and put Si = ζidfi.

Then, ζ−1
i Si = φijζ

−1
j Sj , that is, Si = ζiζ

−1
j φijSj = ζijφijSj , and by (48) we have that

the dfi’s define a global nowhere vanishing holomorphic section of N∗
V ⊗ [V ]|V . This says

that N∗
V ⊗ [V ]|V is isomorphic to the trivial bundle and hence

NV
∼= [V ]|V .

From this we deduce the adjunction formula

KV
∼= KM|V ⊗ [V ]|V . (50)

Exercise 15. Let E be a holomorphic vector bundle of rank n over M . If E admits n

linearly independent holomorphic sections, then E is holomorphically isomorphic to the

trivial bundle Cn.
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Let Aℓ
∞,c(Rn) = Aℓ

c(Rn) be the space of C∞ ℓ-forms on Rn with compact support. The
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c (Rn) is the space of currents of degree q, denoted Dq(Rn). This

means that Dq(Rn) is the space of continuous linear forms T on An−q
c (Rn).

For a good account on currents refer to [4].

Remark 30. The topological background necessary to treat currents is not elementary

and we will only say that the topology involved is based on seminorms. The topology in

Aℓ
∞,c(Rn) doesn’t make it a complete space.

We begin by giving some examples.

Example 31. Let Lqloc(R
n) be the space of q-forms u(x) =

∑
I uI(x)dxI whose coefficients

uI(x) are locally integrable. Then
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is the degree q current associated to u. The assignment u �−→ Tu is injective (compare with

Proposition 13) and we will identify the current Tu with the form u.

Example 32. Let Γ be a piecewise smooth oriented (n−q)-chain in Rn. Note that Γ could

be a closed oriented (n− q)-submanifold, with boundary ∂Γ. Then

TΓ(ϕ) =

∫

Γ
ϕ , ϕ ∈ An−q

c (Rn) (52)

is the current of integration over Γ.

This illustrates the concept of support: the support of a current T , supp(T ), is the

smallest closed set S such that T (ϕ) = 0 for all ϕ ∈ An−q
c (Rn \ S). In the above case

supp(TΓ) = Γ.

The exterior derivative induces an operator

d : Dq(Rn) −→ Dq+1(Rn)

which is, by definition:

(dT )(ϕ) = (−1)q+1T (dϕ) , ϕ ∈ An−q−1
c (Rn) (53)

and it satisfies d2 = 0 (exercise). Compare with (20). This is the beginning of the residue

theory.

A current is closed in case dT = 0.

In the case of Example 31,

(dTu)(ϕ) = (−1)q+1

∫

Rn

u ∧ dϕ = −
∫

Rn

d(u ∧ ϕ)� �� �
=0

+

∫

Rn

du ∧ ϕ = Tdu(ϕ). (54)

In the case of Example 32, by Stokes (with a proper choice of orientations),

(dTΓ)(ϕ) = (−1)q+1

∫

Γ
dϕ = (−1)q+1

∫

∂Γ
ϕ = (−1)q+1T∂Γ(ϕ). (55)

Let ω ∈ Lqloc(R
n) be C∞ outside a closed set S. Suppose that dω on Rn \ S extends to

a locally integrable form on Rn.

Definition 33. The residue is the current defined by

Res(ω) = dTω − Tdω. (56)
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We have suppRes(ω) ⊂ S. This is known as the localization principle.

In C, consider the Cauchy kernel

κ =
1

2πi

dz

z
.

Exercise 16. Show that the function z �−→ 1

z
is locally integrable.

The following is a very useful result (see [6]):

Proposition 34. Let f : C −→ C be a C∞ function and let γ be a simple closed curve in

C whose interior is the open set D. Then, for w ∈ D

f(w) =
1

2πi

∫

γ

f(z)

z − w
dz +

1

2πi

∫ ∫

D

∂f

∂z̄
(z)

dz ∧ dz̄

z − w
.

Remark that, in case f is holomorphic this reduces to Cauchy’s integral formula since
∂f

∂z̄
(z) = 0.

Returning to the Cauchy kernel we have κ ∈ L
(1,0)
loc (C) and is C∞ on C\{0}, dκ = ∂κ = 0

on C \ {0} and by Proposition 34, for ϕ ∈ C∞
c (C)

ϕ(0) =
1

2πi

∫

R2

∂ϕ(z)

∂z̄

dz ∧ dz̄

z
.

Hence Tdκ = 0 and dTκ = ∂Tκ. But this reads (∂Tκ)(ϕ) = ϕ(0) = δ0(ϕ) and

Res(κ) = δ0

the Dirac function.

This can be generalized to Cn ∼= R2n by means of the Bochner-Martinelli kernel. We

start with a kernel in Cn ×Cn, which is the complex analogue of the Newtonian potential

in Rn × Rn:

G(w, z) =




− 1

2π
log |w − z|2, for n = 1

(n− 2)!

2πn
|w − z|2−2n, for n ≥ 2.

In what follows, w will denote the variable of integration, z will be a parameter and we

let

α2n−1 =
2πn

(n− 1)!
and Λ = |w − z|2.
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is the degree q current associated to u. The assignment u �−→ Tu is injective (compare with
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∫
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Notice that, since the area of the sphere S2n−1
R ⊂ Cn of radius R is α2n−1R

2n−1, α2n−1 is

just the area of the unit sphere S2n−1
1 .

The Bochner-Martinelli kernel (for functions) is the double form

K(w, z) = − ∗ ∂wG(w, z)

of type (n, n− 1) in w and type (0, 0) in z.

K(w, z) is represented by the form

K =
(n− 1)!

(2πi)n|w − z|2n
n∑

i=1

(w̄i − z̄i) dwi ∧


∧

j ̸=i

dw̄j ∧ dwj


 .

Set n = 1 to get the Cauchy kernel

κ =
1

2πi

dw

w − z
.

We have ∂wK(w, z) = 0 on Cn × Cn \ {w = z}. K normalizes the area of spheres, more

precisely: let Bϵ(z) denote the euclidean ball centered at z and with radius ϵ. Then,

∫

∂Bϵ(z)

K(w, z) = 1

for all z ∈ Cn and for all ϵ > 0.

Finally we have the Bochner-Martinelli integral formula

Theorem 35. Let U ⊂ Cn be a limited domain whose boundary ∂U is a smooth manifold.

Suppose f : Ū → C is continuous and f is holomorphic in U . Then,

∫

∂U

f(w)K(w, z) =




f(z), for z ∈ U

0, for z ̸∈ U.

Proceeding verbatim as we did in the case of the Cauchy kernel in C, we have that

∂wTK = δz

and

Res(K) = δz.
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A current T ∈ Dq(Rn) may be expressed as a differential form whose coefficients TI are

distributions. Such a current can be written in a unique way as

T =
∑
|I|=q

TI dxI (57)

where TI is a current of degree 0. This is done by introducing the wedge product. If

T ∈ Dq(Rn) and ω ∈ Ar
c(Rn) then T ∧ ω ∈ Dq+r(Rn) is defined by

(T ∧ ω)(η) = T (ω ∧ η) , η ∈ An−q−r
c (Rn). (58)

It follows that (exercise)

d(T ∧ ω) = dT ∧ ω + (−1)qT ∧ dω.

The decomposition (57) is obtained in the following way:

Let I = (i1, . . . , iq), i1 < · · · < iq, let (I, �I) be the permutation (1, . . . , n) �−→ (I, �I)
and σI = ±1 be the sign of this permutation. Given ϕ ∈ D(Rn) identify it with the n-form

ϕdx1 ∧ · · · ∧ dxn ∈ An
c (Rn) and put

TI(ϕ) = TI(ϕdx1 ∧ · · · ∧ dxn) = σI T (ϕdx�I).

Doing this for all I such that |I| = q we obtain the decomposition (57). In particular, reca-

lling Definition 16, if the TI are distributions of order 0 then they define Radon measures

and in this case the current T is identified with a differential form whose coefficients are

measures.

If M is a complex manifold, the currents D(p,p)(M) of type (p, p) are the continuous

linear forms on An−p,n−p
c (M). A (p, p)-current is real if T = T , that is, T (ϕ) = T (ϕ) for

all ϕ ∈ An−p,n−p
c (M). A real current is positive if

ip(p−1)/2T (η ∧ η) ≥ 0, η ∈ An−p,0
c (M). (59)

The positivity of T implies that it has order 0 in the sense of distributions and hence

defines a positive measure, by Definition 18 and Theorem 19.

An important example is given by Example 32: if Z ⊂ M is a codimension p analytic

subvariety and Zreg is the set of smooth points of Z, then the map

TZ(ϕ) =

∫

Zreg

ϕ, ϕ ∈ An−p,n−p
c (M)
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.
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precisely: let Bϵ(z) denote the euclidean ball centered at z and with radius ϵ. Then,
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defines a closed positive current, which is the fundamental class of Z.

A C∞ (1, 1)-form

ω =
i

2

∑
i,j

hij dzi ∧ dz̄j

is real if hij = hji, positive if the matrix hij is positive definite and closed when the

associated hermitian metric ds2 =
∑

i,j hijdzidz̄j is Kähler.

A real function ϕ ∈ L1
loc(M) is plurisubharmonic in case i∂∂ϕ is a positive (1, 1)-current

(derivatives are in the sense of distributional derivatives). There is the ∂∂-Poincaré lemma:

Let T be a closed, positive (1, 1)-current. Then, locally,

T = i∂∂ϕ

for a real plurisubharmonic function ϕ, uniquely determined up to addition of the real part

of a holomorphic function.

5. An application involving holomorphic foliations

5.1. One-dimensional foliations on Pn
C

The content of this section stems from M. Brunella’s article [1]. For a broad account

on holomorphic foliations see [3].

Let us now consider foliations of dimension one on complex projective spaces. Recall

the hyperplane bundle O. A computation shows that any bundle map O(m) → TPn
C is

identically zero for m ≥ 2 and hence one-dimensional (singular) holomorphic foliations F
of Pn

C are given by morphisms

Ψ : O(1− d) −→ TPn
C

where d ≥ 0(here, TPn
C is the holomorphic tangent bundle of Pn

C). The integer d is called

the degree of F . Such a foliation is defined locally by a polynomial vector field whose

expression is as follows: in affine coordinates (z1, . . . , zn) F is given by the orbits of a

polynomial vector field of degree d+ 1 or d, of the following form:

ξ = g R+

d∑
j=0

Yj , (60)
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where R =
n∑

i=1
zi

∂

∂zi
is the radial vector field, g ∈ C[z1, . . . , zn] is homogeneous of degree d

and Yj =
n∑

i=1
Yji

∂

∂zi
with Yji ∈ C[z1, . . . , zn] homogeneous of degree j. ξ is a rational vector

field on Pn
C with a pole of order d− 1 along the hyperplane at infinity Pn−1

C . Therefore, in

order to cancel the pole we tensorize TPn
C by O(d− 1) and obtain a holomorphic section

(which we still call ξ) ξ : Pn
C → TPn

C ⊗O(d− 1). If g ̸≡ 0 then, the hyperplane at infinity

Pn−1
C is not F -invariant and {z ∈ Pn−1

C : g(z) = 0} is precisely the variety of tangencies of

the leaves of F with Pn−1
C (this explains why d is called the degree of F : d is the degree of

the variety of tangencies of F with a generic hyperplane), whereas in case g ≡ 0 and Yd is

not of the form hR, with h homogeneous of degree d− 1, the hyperplane at infinity Pn−1
C

is F -invariant and the restriction F|Pn−1
C

gives a foliation of Pn−1
C of degree d. Remark that

the representation ξ = g R+
∑d

j=0 Yj is unique up to multiplication by a non-zero complex

number since we are only interested in the direction defined by ξ.

The line bundle O(1 − d) is called the tangent bundle of F and noted TF . Its dual

O(d− 1) is the cotangent bundle T ∗F .

The singular set of F , S(F), is the set of zeros of the vector field ξ of (60). We will

assume that S(F) consists only of isolated points. Since Pn
C is compact this implies that

S(F) is a finite set of points. Moreover we will suppose that all the singularities of F are

hyperbolic. This means the following:

Definition 36. Let X be a holomorphic vector field defined on a neighborhood of a point

p ∈ Cn. Suppose X(p) = 0 and the derivative DX(p) satisfies detDX(p) ̸= 0. Let

λ1, . . . , λn be the eigenvalues of DX(p). p is a hyperbolic singularity if λi ̸∈ R.λj for

all i ̸= j.

These singularities have interesting properties, like the one in the proposition below,

but first we need the concept of invariant branch. If X is a holomorphic vector field defined

around a point p with X(p) = 0, an invariant branch (separatrix) for X at p is a non-

constant curve Γ passing through p such that, for each q ∈ Γ\{p} we have X(q) ∈ TqΓ(TqΓ

denotes the holomorphic tangent bundle of Γ).

Proposition 37. Let X and p be as above. Suppose p is a hyperbolic singularity of X

and let λ1, . . . , λn be the eigenvalues of DX(p). Then X has exactly n invariant branches

through p, say Γ1, . . . ,Γn, such that:

(i) Γi is smooth at p, 1 ≤ i ≤ n.
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defines a closed positive current, which is the fundamental class of Z.
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associated hermitian metric ds2 =
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i,j hijdzidz̄j is Kähler.

A real function ϕ ∈ L1
loc(M) is plurisubharmonic in case i∂∂ϕ is a positive (1, 1)-current

(derivatives are in the sense of distributional derivatives). There is the ∂∂-Poincaré lemma:

Let T be a closed, positive (1, 1)-current. Then, locally,

T = i∂∂ϕ

for a real plurisubharmonic function ϕ, uniquely determined up to addition of the real part

of a holomorphic function.

5. An application involving holomorphic foliations

5.1. One-dimensional foliations on Pn
C

The content of this section stems from M. Brunella’s article [1]. For a broad account
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C is
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field on Pn
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C . Therefore, in

order to cancel the pole we tensorize TPn
C by O(d− 1) and obtain a holomorphic section
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not of the form hR, with h homogeneous of degree d− 1, the hyperplane at infinity Pn−1
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is F -invariant and the restriction F|Pn−1
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gives a foliation of Pn−1
C of degree d. Remark that

the representation ξ = g R+
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number since we are only interested in the direction defined by ξ.
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The singular set of F , S(F), is the set of zeros of the vector field ξ of (60). We will

assume that S(F) consists only of isolated points. Since Pn
C is compact this implies that

S(F) is a finite set of points. Moreover we will suppose that all the singularities of F are

hyperbolic. This means the following:

Definition 36. Let X be a holomorphic vector field defined on a neighborhood of a point

p ∈ Cn. Suppose X(p) = 0 and the derivative DX(p) satisfies detDX(p) ̸= 0. Let

λ1, . . . , λn be the eigenvalues of DX(p). p is a hyperbolic singularity if λi ̸∈ R.λj for
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These singularities have interesting properties, like the one in the proposition below,

but first we need the concept of invariant branch. If X is a holomorphic vector field defined

around a point p with X(p) = 0, an invariant branch (separatrix) for X at p is a non-

constant curve Γ passing through p such that, for each q ∈ Γ\{p} we have X(q) ∈ TqΓ(TqΓ

denotes the holomorphic tangent bundle of Γ).

Proposition 37. Let X and p be as above. Suppose p is a hyperbolic singularity of X

and let λ1, . . . , λn be the eigenvalues of DX(p). Then X has exactly n invariant branches

through p, say Γ1, . . . ,Γn, such that:
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(ii) For each eigendirection υj of DX(p), there is exactly one i ∈ {1, . . . , n} such that

Γi is tangent to υj at p.

(iii) If Γ is an invariant branch of X at p then, as germs at p, Γ = Γi for some i.

That is, through a hyperbolic singularity pass n smooth separatrices. For a proof see

[8]. We remark that this proposition holds with the weaker hypothesis λi ̸∈ R+.λj for all

i ̸= j.

We saw in (59) the concept of positive current. Now, suppose we have a one-dimensional

foliation F on Pn
C and let T be a closed positive current of type (1, 1) defined on Pn

C \S(F).

T is said to be invariant by F if T (ϖ) = 0 for every 2-form ϖ which vanishes on the leaves

of F , that is to say that the value T (ϖ) depends only on the restriction of ϖ to the leaves

of F . More explicitly, on Pn
C \ S(F) we may choose coordinates (z1, . . . , zn) in such a way

that F is induced by the vector field
∂

∂z1
. Put

αj = dz1 ∧ · · · ∧ �dzj ∧ · · · ∧ dzn , 1 ≤ j ≤ n.

In these coordinates T can be written locally as

T =
n∑

j,k=1

hjk iαj ∧ ᾱk

where hjk are complex measures. Since T is invariant by F we have T ∧ dj = T ∧ dz̄j = 0

for all j ̸= 1, which gives hjk = 0 whenever (j, k) ̸= (1, 1), so that

T = h11 iα1 ∧ ᾱ1.

Since dT = 0 we have that the distributional derivatives of h11 with respect to z1 and z̄1

are zero. Hence, T does not depend on z1 and can be projected to give a positive measure

on the local transversal section {z1 = 0}. Repeating this procedure on each foliated chart

on Pn
C \ S(F) we associate to T a measure which is transverse to F and invariant by the

holonomy.

Reciprocally, given such a measure it is possible to obtain on Pn
C \ S(F) a closed

positive current T which is invariant by F . This is a consequence of a nontrivial result by

D. Sullivan [11] (Caution: this is not an easy reading paper) which states that there is a

natural bijective correspondence between invariant measures for F|Pn
C\S(F) and invariant

positive currents of type (1, 1).

Now S(F) is, by hypothesis, a finite set of points. In this case the current T , defined

on Pn
C \ S(F) admits a unique extension to all of Pn

C, which we still denote by T .
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5.2. The residue

Let p ∈ S(F) and U be an open neighborhood of p. The foliation F is defined in U by

a holomorphic vector field

υ = X1
∂

∂z1
+ · · ·+Xn

∂

∂zn
having p as the only zero in U . Choose a holomorphic n-form Ω on U without zeros, for

instance Ω = dz1 ∧ · · · ∧ dzn and contract Ω by υ that is, look at (n− 1)-form ⊥υΩ, which

is given by

⊥υΩ =

n∑
i=1

(−1)i−1Xi dz1 ∧ . . . �dzi · · · ∧ dzn (61)

This (n− 1)-form has a geometric interpretation: on U \ {p} the kernel of iυΩ, at each

point, is a subspace of dimension n− 1 which is a complement of the line generated by υ.

Hence ⊥υΩ spans the determinant of the conormal bundle of F , detN∗F .

Consider now the C∞ (1, 0)-form β on U \ {p} defined by

β =




div(υ)
n∑

i=1
|Xi|2




n∑
i=1

X i dzi (62)

where div denotes the divergence of the vector field υ, div(υ) =
n∑

i=1

∂Xi

∂zi
. The β satisfies

(exercise)

d⊥υΩ = β ∧ ⊥υΩ. (63)

Remark that β.υ = div(υ) = trDυ (the trace of the derivative of υ). This tells us that β,

when restricted to the leaves of F , induces a section of the cotangent bundle T ∗F which,

since F has dimension one, is the same as the canonical bundle KF . It follows from this

that β|F is holomorphic and hence holomorphically extendable at p (a fact we will not

prove).

Let φ be a test function on U , which is zero on a neighborhood of p and equal to 1

outside a compact subset of U . The C∞ 2-form dφ ∧ β is defined in U and has compact

support. Define

Res(F , T, p) =
1

2πi
T (dφ ∧ β). (64)

This is an index, or residue, associated to β|F at p relative to the current T . It is well-

defined but we will simply assume this as a fact. The main property of this residue is given

in the following
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on the local transversal section {z1 = 0}. Repeating this procedure on each foliated chart

on Pn
C \ S(F) we associate to T a measure which is transverse to F and invariant by the

holonomy.

Reciprocally, given such a measure it is possible to obtain on Pn
C \ S(F) a closed

positive current T which is invariant by F . This is a consequence of a nontrivial result by

D. Sullivan [11] (Caution: this is not an easy reading paper) which states that there is a

natural bijective correspondence between invariant measures for F|Pn
C\S(F) and invariant

positive currents of type (1, 1).

Now S(F) is, by hypothesis, a finite set of points. In this case the current T , defined

on Pn
C \ S(F) admits a unique extension to all of Pn

C, which we still denote by T .
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outside a compact subset of U . The C∞ 2-form dφ ∧ β is defined in U and has compact

support. Define

Res(F , T, p) =
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This is an index, or residue, associated to β|F at p relative to the current T . It is well-
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Proposition 38. Let F be a holomorphic foliation of dimension one on Pn
C with finite

singular set and let T be a closed positive current of bidimension (1, 1) on Pn
C which is

invariant by F . Then

c1(detN
∗F).[T ] =

∑
p∈S(F)∩supp(T )

Res(F , T, p). (65)

Proposition 38 is a result of Poincaré-Hopf type. The right hand side of equation (65) is

a sum of local indices of the current associated to singular points of the foliation, whereas

the left hand side is a number, of global character, associated to F and T . The term

c1(detN
∗F) is the first Chern class of the line bundle detN∗F and it is given by the trace

of a curvature matrix (note that the form β satisfies β.υ = trDυ). It is represented by a

closed C∞ 2-form and so c1(detN
∗F) ∈ H2

DR(Pn
C,R). [T ] ∈ H2(Pn

C,R) is the homology

class of T and

c1(detN
∗F).[T ] = T (Θ)

where Θ is a convenient compactly supported closed 2-form representing c1(detN
∗F). The

proof is given in [1].

5.3. The theorem

We now bring in the hyperbolic singularities in order to explain a result of M. Brunella

[1]. We denote by Fol(d, n) the space of holomorphic foliations on Pn
C of degree d. This

space lies inside a projective space since its points are represented by vector fields ξ as in

(60), modulo multiplication by complex numbers, (the coefficients of the vector field are

homogeneous coordinates) hence it has a natural topology.

Theorem 39. Given n ≥ 2 and d ≥ 2, there exists an open and dense subset U ⊂ Fol(d, n)

such that any F ∈ U has no invariant measure.

Let’s give a very rough idea of how this result is proven. The set U ⊂ Fol(d, n) was

constructed in [8] and it has the following properties:

(i) if F ∈ U then all singularities of F are hyperbolic.

(ii) if F ∈ U then no algebraic curve is invariant by F .

(iii) the set U is open and dense (even in the real analytic Zariski topology).
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Now, for F ∈ U Brunella shows that, assuming F admits an invariant closed positive

current T , we necessarily have Res(F , T, p) = 0 at all singularities of the foliation. This is

because there are no invariant algebraic curves so that the invariant branches through a

singularity do not fit into an invariant compact set (an algebraic curve). Hence the right

hand side of (65) vanishes, which gives c1(detN
∗F).[T ] = 0. But we have the relation

(see [2])

detN∗F = KPn
C
⊗ TF = O(−n− 1)⊗O(1− d) = O(−n− d). (66)

This equality means that c1(detN
∗F).[T ] < 0 since T is positive. This contradiction shows

that that are no invariant closed positive currents, hence no invariant measures.

6. Exercises

Exercise 1.– Draw the graphs of the following functions:

f : R → R, f(t) = e−1/t if t > 0, f(t) = 0 if t ≤ 0. Show that f ∈ C∞(R,R).

g : R → R, g(t) = f(t+ 2)f(−t− 1).

h : R → R, h(t) =
1

A

t∫

−∞

g(s) ds where A =

∞∫

−∞

g(s) ds.

Finally set ϕ : Rn → R, ϕ(x) = h(−|x|).

Show that all these functions are C∞. Show that ϕ satisfies ϕ(x) = 0 if |x| ≥ 2,

ϕ(x) = 1 if |x| ≤ 1 and 0 ≤ ϕ(x) ≤ 1 for all x ∈ Rn.

Exercise 2.– (Bump functions). Given real numbers 0 < a < b, ε > 0 and p ∈ Rn

construct a function ϕa,b,ε,p : Rn → R of class C∞ such that, ϕ(x) = 0 for |x − p| ≥ b,

ϕ(x) = ε for |x− p| ≤ a and 0 ≤ ϕ(x) ≤ ε for all x ∈ Rn.

Exercise 3.–∗ Find a subset of Rn which is NOT contained in B !

Exercise 4.– Show the following properties of measures:

(i) If A1, A2, . . . , Ak is a finite collection of disjoint measurable sets then

µ

(
k∪

i=1
Ai

)
=

k∑
i=1

µ(Ai). This is called finite additivity.

(ii) If A ⊂ B, A and B measurable, then µ(A) ≤ µ(B).

(iii) If Ai is measurable and A1 ⊂ A2 ⊂ A3 ⊂ · · · , then ĺım
i→∞

µ(Ai) = µ

( ∞∪
i=1

Ai

)
.
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Proposition 38. Let F be a holomorphic foliation of dimension one on Pn
C with finite

singular set and let T be a closed positive current of bidimension (1, 1) on Pn
C which is

invariant by F . Then

c1(detN
∗F).[T ] =
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p∈S(F)∩supp(T )

Res(F , T, p). (65)
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c1(detN
∗F) is the first Chern class of the line bundle detN∗F and it is given by the trace

of a curvature matrix (note that the form β satisfies β.υ = trDυ). It is represented by a

closed C∞ 2-form and so c1(detN
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where Θ is a convenient compactly supported closed 2-form representing c1(detN
∗F). The

proof is given in [1].

5.3. The theorem

We now bring in the hyperbolic singularities in order to explain a result of M. Brunella

[1]. We denote by Fol(d, n) the space of holomorphic foliations on Pn
C of degree d. This

space lies inside a projective space since its points are represented by vector fields ξ as in

(60), modulo multiplication by complex numbers, (the coefficients of the vector field are

homogeneous coordinates) hence it has a natural topology.

Theorem 39. Given n ≥ 2 and d ≥ 2, there exists an open and dense subset U ⊂ Fol(d, n)

such that any F ∈ U has no invariant measure.

Let’s give a very rough idea of how this result is proven. The set U ⊂ Fol(d, n) was

constructed in [8] and it has the following properties:

(i) if F ∈ U then all singularities of F are hyperbolic.

(ii) if F ∈ U then no algebraic curve is invariant by F .

(iii) the set U is open and dense (even in the real analytic Zariski topology).
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because there are no invariant algebraic curves so that the invariant branches through a

singularity do not fit into an invariant compact set (an algebraic curve). Hence the right

hand side of (65) vanishes, which gives c1(detN
∗F).[T ] = 0. But we have the relation

(see [2])
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⊗ TF = O(−n− 1)⊗O(1− d) = O(−n− d). (66)

This equality means that c1(detN
∗F).[T ] < 0 since T is positive. This contradiction shows

that that are no invariant closed positive currents, hence no invariant measures.
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f : R → R, f(t) = e−1/t if t > 0, f(t) = 0 if t ≤ 0. Show that f ∈ C∞(R,R).
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g(s) ds where A =
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g(s) ds.

Finally set ϕ : Rn → R, ϕ(x) = h(−|x|).

Show that all these functions are C∞. Show that ϕ satisfies ϕ(x) = 0 if |x| ≥ 2,

ϕ(x) = 1 if |x| ≤ 1 and 0 ≤ ϕ(x) ≤ 1 for all x ∈ Rn.

Exercise 2.– (Bump functions). Given real numbers 0 < a < b, ε > 0 and p ∈ Rn

construct a function ϕa,b,ε,p : Rn → R of class C∞ such that, ϕ(x) = 0 for |x − p| ≥ b,

ϕ(x) = ε for |x− p| ≤ a and 0 ≤ ϕ(x) ≤ ε for all x ∈ Rn.

Exercise 3.–∗ Find a subset of Rn which is NOT contained in B !

Exercise 4.– Show the following properties of measures:
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i→∞
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( ∞∪
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(iv) If Ai is measurable and A1 ⊃ A2 ⊃ A3 ⊃ · · · and if µ(A1) < ∞, then

ĺım
i→∞

µ(Ai) = µ

( ∞∩
i=1

Ai

)
.

Exercise 5.– Show that the following affirmatives are equivalent:

(i) L>
f (t) ∈ Σ.

(ii) L<
f (t) = {x ∈ U : f(x) < t} ∈ Σ.

(iii) L≥
f (t) = {x ∈ U : f(x) ≥ t} ∈ Σ.

(iv) L≤
f (t) = {x ∈ U : f(x) ≤ t} ∈ Σ.

Hence we could have used any of these to define measurability of a function. Hint:

{x ∈ U : f(x) > t} =

∞∪
n=1

{x ∈ U : f(x) ≥ t+ 1/n}.

Exercise 6.– If Σ = B in Rn then any continuous or lower semicontinuous or upper

semicontinuous function is measurable. Hint: f is lower semicontinuous if L>
f (t) is open

and upper semicontinuous if L<
f (t) is open.

Exercise 7.– Show that, if f and g are measurable, then so are the functions

x �→ af(x) + bg(x), a, b ∈ C, x �→ f(x)g(x), x �→ |f(x)|, x �→ h(f(x)), where h : C −→ C
is Borel measurable; x �→ máx{f(x), g(x)}.

Exercise 8.– Let A and B be subsets of Rn and define

A+B = {a+ b : a ∈ A, b ∈ B}.

Show that if A is closed and B is compact then A+B is closed. Give an example with A

and B closed and A+B not closed.

Exercise 9.–

(i) Show that T (ϕ) = ϕ(k)(0), ϕ ∈ C∞
c (R) is a distribution in D′(R) of order ≤ k.

(ii) Show that T as in (i) is of order k in any neighborhood of 0. Hint: Consider

ϕϵ(x) = xkφ(x/ϵ) where φ is a bump function equal to 1 around 0.

(iii) Show that the distribution given by S(ϕ) =
∞∑
0
(−1)kϕ(k)(k) is not of finite order.
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Exercise 10.– Show that the change from the basis {∂/∂xj , ∂/∂yj} to the basis

{∂/∂zj , ∂/∂z̄j} is given by the matrix

P =

(
1/2 1/2

−i/2 i/2

)
with P−1 =

(
1 i

1 −i

)
.

▹

Exercise 11.– This exercise gives an alternative description of vector bundles. Let

{Uα} be an open cover of X. Suppose we are given a family of continuous functions,

defined in Uαβ , Θαβ : Uαβ → GL(n,R) and satisfying ΘαβΘβ γΘγ α = I in Uαβ γ and

Θαβ = Θ−1
β α in Uαβ (remark that Θαα = I). Set F =

⨿
α∈A

Uα × Rn (disjoint union with

the obviuos topology) and define the following equivalence relation in F :

(α, x, u) ∼ (β, y, v) ⇐⇒ x = y , Θαβ(x)v = u and Uαβ ̸= ∅.

Show that the quotient F/ ∼ has the structure of a real vector bundle of rank n over X,

unique up to isomorphism, whose transition functions are the Θαβ . ▹

Exercise 12.– If 0 −→ F
f−→ E

g−→ G −→ 0 is an exact sequence of vector bundles

over X, that is, 0 −→ Fx −→ Ex −→ Gx −→ 0 is exact ∀x ∈ X, then f identifies F with

a subbundle of E and g induces an isomorphism between E/F and G.

Exercise 13.– Determine the transition functions of f−1E.

Exercise 14.– Show that any two hyperplanes define isomorphic bundles.

Exercise 15.– Let E be a holomorphic vector bundle of rank n over M . If E admits

n linearly independent holomorphic sections, then E is holomorphically isomorphic to the

trivial bundle Cn.

Exercise 16.– Show that the function z �−→ 1

z
is locally integrable.
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ĺım
i→∞

µ(Ai) = µ

( ∞∩
i=1

Ai

)
.

Exercise 5.– Show that the following affirmatives are equivalent:

(i) L>
f (t) ∈ Σ.

(ii) L<
f (t) = {x ∈ U : f(x) < t} ∈ Σ.

(iii) L≥
f (t) = {x ∈ U : f(x) ≥ t} ∈ Σ.

(iv) L≤
f (t) = {x ∈ U : f(x) ≤ t} ∈ Σ.

Hence we could have used any of these to define measurability of a function. Hint:

{x ∈ U : f(x) > t} =

∞∪
n=1

{x ∈ U : f(x) ≥ t+ 1/n}.

Exercise 6.– If Σ = B in Rn then any continuous or lower semicontinuous or upper

semicontinuous function is measurable. Hint: f is lower semicontinuous if L>
f (t) is open

and upper semicontinuous if L<
f (t) is open.

Exercise 7.– Show that, if f and g are measurable, then so are the functions

x �→ af(x) + bg(x), a, b ∈ C, x �→ f(x)g(x), x �→ |f(x)|, x �→ h(f(x)), where h : C −→ C
is Borel measurable; x �→ máx{f(x), g(x)}.
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Exercise 10.– Show that the change from the basis {∂/∂xj , ∂/∂yj} to the basis

{∂/∂zj , ∂/∂z̄j} is given by the matrix

P =

(
1/2 1/2

−i/2 i/2

)
with P−1 =

(
1 i

1 −i

)
.

▹

Exercise 11.– This exercise gives an alternative description of vector bundles. Let

{Uα} be an open cover of X. Suppose we are given a family of continuous functions,

defined in Uαβ , Θαβ : Uαβ → GL(n,R) and satisfying ΘαβΘβ γΘγ α = I in Uαβ γ and

Θαβ = Θ−1
β α in Uαβ (remark that Θαα = I). Set F =

⨿
α∈A

Uα × Rn (disjoint union with

the obviuos topology) and define the following equivalence relation in F :

(α, x, u) ∼ (β, y, v) ⇐⇒ x = y , Θαβ(x)v = u and Uαβ ̸= ∅.

Show that the quotient F/ ∼ has the structure of a real vector bundle of rank n over X,

unique up to isomorphism, whose transition functions are the Θαβ . ▹

Exercise 12.– If 0 −→ F
f−→ E

g−→ G −→ 0 is an exact sequence of vector bundles

over X, that is, 0 −→ Fx −→ Ex −→ Gx −→ 0 is exact ∀x ∈ X, then f identifies F with

a subbundle of E and g induces an isomorphism between E/F and G.

Exercise 13.– Determine the transition functions of f−1E.

Exercise 14.– Show that any two hyperplanes define isomorphic bundles.

Exercise 15.– Let E be a holomorphic vector bundle of rank n over M . If E admits

n linearly independent holomorphic sections, then E is holomorphically isomorphic to the

trivial bundle Cn.

Exercise 16.– Show that the function z �−→ 1

z
is locally integrable.
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Singularidades de campos de vectores reales:
perfil topológico

Clementa Alonso-González

1. Introducción

El objetivo de este curso es dar una introdución al estudio topológico local de los

campos de vectores reales. Aunque en principio manejaremos conceptos y resultados váli-

dos para cualquier dimensión, nos centraremos esencialmente en el caso bidimensional.

Nos interesan fundamentalmente dos cuestiones: la clasificación topológica de campos de

vectores cerca de un punto singular y la determinación de un representante sencillo del

tipo topológico de un campo a partir de la expresión del mismo. Supondremos que el

alumno está familiarizado con los conceptos y resultados básicos de la teoŕıa de ecuaciones

diferenciales y que maneja las nociones básicas de geometŕıa algebraica.

Para no extendernos demasiado en la redacción, en la mayor parte de los casos hemos

omitido las demostraciones completas de los resultados que se presentan, aunque siempre

se incluye la correspondiente referencia bibliográfica. A lo largo de estas notas hemos ido

formulando preguntas y proponiendo ejercicios que el lector puede intentar responder para

una mejor comprensión de los conceptos. Al final de las mismas también incluimos una

breve colección de ejercicios y problemas.

Este texto está organizado en dos secciones respondiendo a las dos cuestiones que nos

interesan. En la primera de ellas recordaremos aspectos y definiciones generales de campos

de vectores en cualquier dimensión y daremos una clasificación topológica local de campos

de vectores anaĺıticos planos. La herramienta fundamental que utilizamos para dar esta

clasificación es la reducción de singularidades, a la que dedicamos una buena parte del

primer caṕıtulo. La segunda parte está dedicada al problema de la determinación finita

y más concretamente a demostrar el Teorema de Brunella-Miari. Este es el resultado

alrededor del cual se desarrolla toda la segunda sección. Esencialmente establece que la

parte principal del campo dada por el poĺıgono de Newton del mismo tiene, bajo ciertas

condiciones, el mismo tipo topológico que el campo original. Para explicar este resultado,

haremos previamente una breve introducción a los aspectos básicos y al lenguaje de la

geometŕıa tórica.

Al elaborar la primera sección hemos utilizado principalmente los libros de Perko [24],
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