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ABOUT THE CREMONA GROUP / JULIE DESERTI

1 First definitions and properties

1.1 Divisors and blow-ups

Definition 1.1. — Let X be an algebraic variety. A prime divisor on X is an irreducible closed

subset of X of codimension 1.

Examples 1.2. e If dimX =2, i.e. if X is a surface, then the prime divisors of X are the

irreducible curves that lie on it.

e If X =P¢, then the prime divisors are given by the zero locus of irreducible homogeneous

polynomials.
Let us set

m
Div(X) = { Z aiDi|m € N, a; € Z, D; prime divisors on X}.

i=1

m
An element Z a;D; of Div(X) is effective if a; > 0 for any 1 <i < m.

i=1 B
If f is a non zero rational function, and D a prime divisor of X, one can define the multiplicity

v¢(D) of f at D as follows
e V;(D) =k > 0if f vanishes on D at the order ;
® v;(D) = —kif f has poles of order k on D;
o v¢(D) = 0 otherwise.

To any rational function f € C(X)* one associates a divisor div f € Div(X) defined by

divf= Y vy(D)D.
divisor

Such a divisor is called a principal divisor. Note that a principal divisor belongs to Div(X) as
V(D) = 0 for all but finitely many D. Since div f 4+ divg = div fg the set of principal divisors is a
subgroup of Div(X).

Two divisors D, D’ on an algebraic variety are linearly equivalent if D — D’ is a principal
divisor. The set of equivalence classes corresponds to the quotient of Div(X) by the subgroup of
principal divisors. When X is smooth, this quotient is isomorphic to the group of isomorphism
classes of line bundles on X called the Picard group of X and denoted Pic(X).
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Exercice 1. — Determine Pic(P{.).
Exercice 2. — Determine Pic(PL x PL).
There is a notion of intersection:

Proposition 1.3 ([26]). — Let S be a smooth projective surface. There exists a unique bilinear
symmetric form
Div(S) x Div(S) — Z, (D,D')—~D-D

having the following properties:
e if C and D are smooth curves meeting transversely, then C-D = #(CND);
e if C and C' are linearly equivalent, then C-D = C' - D.
In particular this yields an intersection form
Pic(S) x Pic(S) — Z, (D,D"y—D-D'.

Definition 1.4. — Let p be a point of a smooth surface S. We say that ©: ¥ — S is a blow-up of
peSif

e Y is a smooth variety,
¢ My qni(py: ¥~ {n'(p)} — S~ {p} is an isomorphism,
° chl(p) ~ ]P’é:.

The set ©~!(p) is called the exceptional divisor.

Let us explain how to construct . Assume for simplicity that X = § is a surface. Take a
neighborhood U of p on which there exist local coordinates x, y at p, that is the curves x = 0 and

y = 0 intersects transversely at p. Up to shrinking U one has
(x=0)Nny=0)nU={p}.

Let us consider the subvariety UC Ux IP’(%: defined by xv —yu = 0 where u and v are homogeneous
coordinates on IP’}C. The projection 7t: U— Uis an isomorphism over the points of U where at

most one of the coordinates x, y vanishes

n((O,y),(O: 1)) =(0,y) Tl:((x,O),(l :0)) = (x,0)

and ! (p) = {p} x PL. It follows from the construction that the points of E can be naturally

identified with the tangent directions on S at p.
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Remarks 1.5. eIf: Y — Sand ': Y — S are two blow-ups of p, then there exists an
isomorphism @: ¥ — Y’ such that T = 7'@; we can thus speak about the blow-up of p € S.

e Note that 7 is not an isomorphism: it contracts E = n~! (p) ~ ]P’(IC onto p.

Lett: Bl,S — S be the blow-up of p € S. The morphism 7 induces the map
T*: Pic(S) — Pic(Bl,S), Cwn'C.

If S is a smooth algebraic surface and if C C S is an irreducible curve, the strict transform of
CisC=n"1(C~{p}).
Let us recall that if Y is a quasi-projective variety, and if y is a point of Y, then O,y is the set

of equivalence classes of pairs (U, f) where
e U CY isan open subset,
e ye U,
e feC[U].

Definition 1.6. — If S is a smooth algebraic surface, C C S a curve on S, and p a point of S, we
can define the multiplicity m,,(C) of C at p.

Let m be the maximal ideal of the ring of functions O, 5. Let f be a local equation of C; then
m,,(C) can be defined as the integer k such that f € m* \ m**!. For instance if § is rational, one
can find a neighborhood U of p in S with

ucc?
p=(0,0)
m
C is described by ZPi(XJ) =0

i=1
where P; denotes an homogeneous polynomial of degree i.

The multiplicity m,(C) is equal to the lowest i such that P; # 0. The following properties holds

my(C) >0
m,(C)=0<=p¢gC
m,(C) =1 <= p is a smooth point of C

Take two distinct curves C and C’' without common component. One can define an integer
(C-C"), which counts the intersection of C and C' at p:
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e itis equal to 0 if either C, or C’ does not pass through p,

e otherwise let f, resp. g be some local equation of C, resp. C’ in a neighborhood of p and

. Oy,
define (C-C'), to be dim (f’_;).

This number is related to C-C’ as follows (see [26, Chapter V, Proposition 1.4]): if C and C’

are two distinct curves without common irreducible component on a smooth surface, then

c.c'=Y (cC),
pecnc’

In particular C-C’ > 0.

Lemma 1.7. — Let 7t: B1,S — S be the blow-up of p € S. Then
T°C =C+m,(C)E

where C is the strict transform of C, and E = (p).

Proof. Let us fix some local coordinates (x,y) such that

p=(0,0)
k=my(C)
C is given by

Pe(x,) + Pes1 (6,y) + ..+ Pere(x,y) =0
where P; denotes a homogeneous polynomial of degree i

The blow-up of p can be viewed as (u,v) — (uv,v); hence the pull-back of C is given by
vk(Pk(u, 1)+ vPei(u, 1) + ...+ Po(uy 1))=0

i.e. it decomposes into k times the exceptional divisor =1 (0,0) = (v = 0) and the strict transform
of C. O

Let S be a compact, complex surface, and let wg be the line bundle of differential 2-forms on
S. The canonical divisor K of S is such that Og(Ks) = ws.

Example 1.8. The canonical divisor of ]P% is
Kpy = [-3H]

: 2
where H denotes a generic hyperplane of Pg.
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Proposition 1.9 ([26]). — Let S be a smooth surface, p be a point of S, and T: Bl,S — S be the
blow-up of p. Set E ="' (p) =~ IP’(IC. One has

Pic(Bl,S) = n*Pic(S)+Z-E.
The intersection form on B1,,S is induced by the intersection form on S via

TC-m'C' =C-C VYC,C' €Pic(S)
TC-E=0 VC €Pic(S)
E’=E.E=-1

C2=C2—1 YC> p,C smooth

Furthermore, Kgy,s = T*Ks+E.
The proof is decomposed in the following exercises:
Exercice 3. Prove the following equalities

*C-t*C'=C-C' VC,C €Pic(S)
n*C-E =0 VC € Pic(S)
E’=E-E=-1

C=c*-1 VC 3 p, C smooth

Exercice 4. Prove that
Pic(Bl,S) = n*Pic(S)+Z-E.

Exercice 5. Prove that Kp|,s = T"Ks + E.

1.2 Rational and birational maps
1.2.1 First Definitions

Consider two irreducible varieties X and Y. A rational map ¢: X --» Y is a morphism from an
open subset U of X to Y which cannot be extended to any larger open subset; ¢ is defined at x if
x belongs to U. The set X . U is the indeterminacy set of ¢; it is denoted Ind ¢.

Suppose that X = § is a smooth surface, then Ind ¢ is the union of a finite number of points.
One has

e if Cis an irreducible curve on S, then ¢ is defined on C \ Ind ¢; the image of C is ¢(C \ Ind §)
and is still denoted ¢(C).
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e restriction induces an isomorphism between the divisors groups of S\ Ind¢ and S, which
induces an isomorphism between Pic(S) and Pic(S~\ Ind¢). We can thus speak of the inverse
image ¢*D under ¢ of a divisor D on Y.

Example 1.10. — Let S C IP{, be a surface, and p be a point of S. The set of lines through p can
be identified with a projective space IP’Z‘:’I. To any point g of S~ {p} we associate the line through
p and g; this yields a rational map S --» IPZ’C’I (the projection away from p). It is defined outside
p and extends to a morphism Bl,S — P&,

A birational map ¢: X --» Y is arational map such that there exists arational map y: Y --» X
such that oy = yo = id.

1.2.2 Linear systems

Consider a divisor D on a surface S; we denote by |D| the set of all effective divisors on S linearly
equivalent to D. Every non-vanishing section of Oy(D)! defines an element of |D|, namely its
divisor of zeros. Conversely any element of |D| is the divisor of zeros of a non-vanishing section
of Og(D), defined up to scalar multiplication. Therefore |D| can be naturally identified with the
projective space associated to the vector space” H’(Os(D)). A linear subspace .# of |D| is called
a linear system on S; equivalently . can be defined by a vector subspace of H( Og(D)).

The dimension of .# is by definition its dimension as a projective space. A 1-dimensional
linear system is a pencil.

A curve C is a fixed component of . if any divisor of . contains C.

The fixed part of . is the biggest divisor F that is contained in every element of .7

A point p of S is a base point or fixed point of .7 if every divisor of .% contains p. If the
linear system %’ has no fixed part, then it has only a finite number, say b, of fixed points; clearly
b<D? forDe.¥.

Let S be a surface. Then there is a bijection between the set
{ rational maps ¢: S --» P{; such that ¢(S) is contained in no hyperplane }

and the set

{ linear systems on S without fixed part and of dimension n }

Indeed, to the map ¢ we associate the linear system ¢*|H|, where |H| is the system of hyper-

planes in P{.. Conversely, let . be a linear system on § with no fixed part and denote by .&"

IRecall that Og (D) denotes the invertible sheaf corresponding to D.
2Recall that H(Og(D)) is the i-th cohomology group of O (D).
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the projective space dual to .. Now define a rational map ¢: S --» " by sending x € S to the
hyperplane in . consisting of the divisors passing through x; the map ¢ is defined at x if and only
if x is not a base point of .7

1.2.3 Cremona maps
If S = P, then a birational self-map ¢ of S can be written
(z0:21:22) - (90(20,21,22) : 01(20,21,22) : P2(20,21,22))

where the ¢;’s denote homogeneous polynomials of the same degree without common factor (of
positive degree). The set of all birational maps of IP% is called the Cremona group, and is denoted
Bir(PZ). The indeterminacy set Ind¢ of ¢ is the finite set given by

{P € PL100(p) = 01(p) = 02(p) = 0}.
The exceptional set Exc ¢ of ¢ is the set of curves blown down by ¢; one has
Exc¢ = { detjac¢ = 0}.

The degree of ¢ is defined by: deg = deg¢;. Let d be a positive integer. The set Biry(P2) of
plane birational maps of degree d is quasi-projective: it is a Zariski open subset in the subvariety
of the projective space made of triples of homogeneous polynomials of degree d modulo scalar
multiplication. The group Aut(P2) acts on Bir,(IP2) as follows

Aut(P2) x Birg(P%) x Aut(PZ) — Birg(P%),  (A,0,B) — A¢B™ L.

If ¢ is an element of Biry(P%), then O(¢) denotes the orbit of ¢ under this action.

The linear system . defined by any element ¢ = (¢ : ¢ : ¢2) of Bir(P?) is given by
{Modo+A101 + A2 = 0] (ko 1 As 1 ho) € PR
It is the reciprocical image by ¢ of the net of lines
{Mozo+Mzi +hoza = 0] (o1 A 1 ho) €PL Y.

In particular any curve of . is a rational one. Take a base point p of ¢; the multiplicity of ¢ at p

is the multiplicity of a generic curve of .7 at p, that is the order of a generic element of . at p.
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The degree is not a birational invariant: there exist ¢ and y in Bir(P2) such that deg(woy ') #
deg ¢. Nevertheless the dynamical degree

A(0) = lim (deg¢")'/"

n—r+oo

of a birational map ¢ is. More generally consider a projective surface S, a birational self-map ¢ of

S, and || - || any norm of the Néron-Severi real vector space NS(S); we can define
T nyx||1/n
M) = Tim [1(9")"

where ¢* is the induced action on NS(S).
Note that 1 < A(¢) <d. When ¢ is an automorphism with A(¢) > 1, then A(9) is algebraic
but never rational; in particular A(¢) < d. Let ® denote any Kihler form (for instance the Fubini

Study form) with [ ®? = 1. For any generic line L one has
M) = timl|(g) "¢
= tim( Ao p)""
= liF(A—kLﬁ)l/k
= lim (vol(9~")) "

so the dynamical degree also measures the exponential rate of growth of (k — 1)-dimensional
volume under pullback. It would be convenient if we could have (¢*)% = (¢*)*. Diller and Favre
showed there is a finite sequence of blow-ups 7: §' — S such that the induced map ¢y = w01
satisfies ()" = (¢%) (see [18]). Set ®y = T*®; then

1i]£n(/sm/\(¢k)*m)]/k
= li]fn(/y OJS//\(¢]§/)*(DS'>I/k
tim /S 0 A (05 ay) v

The form @y is a Kahler form so as soon as A(¢) > 1 the growth of g under (¢%)* gives the

Mo)

growth of |(¢%)*| and A(¢) coincides with the spectral radius of ¢, i.e. the modulus of the largest
eigenvalue.

Definition 1.11. — Let ¢ be an element of Bir(IP2).
If (deg¢"), is bounded, we say that ¢ is elliptic.
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If (deg "), grows linearly, then ¢ is a Jonquiéres twist.

If (deg "), grows quadratically, then ¢ is a Halphen twist.

If (deg ™), grows exponentially, then ¢ is hyperbolic.

Examples 1.12. o Birational self-maps of IF’?C of degree 1 are maps of the type

(0020 +ai1z1 +axz2 1 a3zo +asz1 +ass : asZo +aizi +a8Z2)

with det(a;) # 0; they form the group Aut(PPZ). They are elliptic maps.
The set Birp(P2) is an irreducible algebraic variety of dimension 14. Set

6= (2122 : 2022 : 2021)
p = (2022 : 2021 : 23)
= (202247} 12122 : 23)

One has ([11])

Denote by J; the set of birational maps of degree d of IP’% that preserve the pencil of lines
through pp = (1:0:0). These maps are called Jonquiéres maps of degree d. The Jon-
quiéres group is the group J = Uy J,;. In affine coordinates an element ¢ of J; has the
following form

0(20,21) = (

¢ B]ePGL(z,C) {a(“) b(z)
Yy 8 c(z1) d(z)

Cleaning denominators we may assume that a, b, ¢ and d are polynomials of respective
degree d — 1,d, d —2, and d — 1. The base points of ¢ are

a(z1)zo+b(z1) oz +[3>
c(z1)zo+d(z1)" ya1 +8
with

€ PGL(2,C(z1)).

the point po = (1:0: 0) with multiplicity d — 1
2d — 2 single points py, p2, ..., Pad—2

The same holds for ¢~

Remarks that the set of Jonquiéres twist is contained in 7 but the inclusion is strict (for

instance © is elliptic and belongs to 7).
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o A polynomial automorphism ¢ of C? is a bijective map of the form
0:C*—=C2% (20,21) > (90(20,21),01(20,21)),  ¢i € Clzo,21].

The set of polynomial automorphisms of C? form a group denoted Aut(C?). According to
Friedland and Milnor if ¢ belongs to Aut(C?), then up to conjugacy ([20])

(i) either ¢ = (ox+ P(y),By+7) with o, B, y€ C, af #0, P € CJy],
(i) or
O="hhy.. Iy
with h; = (y,P,(y) — 8ix), 8; € C*, P; € Cly], deg P, > 2.
In case (i), then ¢ is elliptic; in case (ii) ¢ is hyperbolic.

Exercice 6. — Give a description of the indeterminacy set, and the exceptional set of an automor-

phism of IF%.

Exercice 7. — Give a description of the indeterminacy set, and the exceptional set of G, resp. p,
resp. T.

Exercice 8. — Give a description of the linear systems associated to &, p and 7.

There is a "classification" of the birational maps of IP%:

Theorem 1.13 ([18, 25, 4]). — Let ¢ be an element of the Cremona group. Then exactly one of
the following holds

o O is elliptic, furthermore either ¢ is of finite order, or ¢ is conjugate to an automorphism of
2.
Pg;

o O is a Jonquiéres twist, § preserves a unique fibration that is rational and ¢ is non conjugate

to an automorphism;

o 0 is a Halphen twist, § preserves a unique fibration that is elliptic, and ¢ is conjugate to an

automorphism;
o O is a hyperbolic map.

In the first three cases M(0) = 1, in the last one A(0) > 1.

Exercice 9. Give an example of an elliptic map, a Jonquieres twist, a Halphen twist, and a hyper-

bolic map.
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1.3 Zariski theorem
Let us recall the following statement.

Theorem 1.14 (Zariski). Let S, S be two smooth projective surfaces and ¢: S --» S be a birational
map. There exists a smooth projective surface S' and two sequences of blow-ups w;: S’ — S,

To: S’ — S such that ¢ = Ty, !
1

S/
YN
S———-—-—- 58
o
Example 1.15. The involution
[ [Pé -- ]P’%) (z0:21:22) --» (2122 1 2022 : 2021)

is the composition of two sequences of blow-ups

ZQR
Ep Ex
Lpo Lpr
Ep
Y/ X
Q. Lor /R
E E
Lpr Lpg 2 R
P EP
c
with
P=(1:0:0), 0=(0:1:0), R=(0:0:1),
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Lpg (resp. Lpg, resp. Log) the line passing through P and Q (resp. P and R, resp. Q and R) Ep
(resp. Eg, resp. Eg) the exceptional divisor obtained by blowing up P (resp. Q, resp. R) and ZpQ
(resp. Lpg, tesp. Log) the strict transform of Lpg (resp. Lpg, resp. Log)-

We will prove Theorem 1.14 in the following exercises. There are two steps:

e the first one is to compose ¢ with a sequence of blow-ups in order to remove all the points

of indeterminacy, we thus have

where ; is a finite sequence of blow-ups and ﬁ; a birational morphism;

o the second step can be stated as follows: let 0: S — S’ be a birational morphism between two
surfaces S and S'. Assume that ¢! is not defined at a point p of §'; then ¢ can be written Ty
where 7: Bl,$" — §' is the blow-up of p € §’ and ¥ a birational morphism from S to BL,S".

Remark 1.16. The first step is also possible with a rational map, and can be adapted in higher
dimension whereas the second one isn’t.

Exercice 10. Let ¢: S --» X be a rational map from a surface to a projective variety. Then there
exists a surface §', a morphism n: §' — S which is the composition of a finite number of blow-ups,
and a morphism f: §' — X such that

commutes.
The second step is decomposed in the two following exercises.

Exercice 11. Let ¢: S --» S be a birational map between two surfaces S and §'. If there exists a
point p € S such that ¢ is not defined at p there exists a curve C on S such that ¢~ (C) = p.
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Exercice 12. Let ¢: S — S’ be a birational morphism between two surfaces S and §’. Assume that
¢! is not defined at a point p of §'; then ¢ can be written Ty where 7t: Bl,,S" — ' is the blow-up
of p € §' and  a birational morphism from S to Bl,S’

Bl,S'

VA

S—>S/

1.4 Exceptional configurations and characteristic matrices

Let ¢ € Bir(P2) be a birational map of degree v. By Theorem 1.14 there exist a smooth projective
surface S’ and T, 1| two sequences of blow-ups such that

We can rewrite T as follows
TS=8 %85 % . B NS =P2
where T; is the blow-up of the point p;_; in S;_;. Let us set
Ei=n"(pi), Zi = (Tip10...07)"E;.

The divisors ‘Z; are called the exceptional configurations of 7 and the p; base-points of 0.

1

An ordered resolution of ¢ is a decomposition ¢ =M~ where 1 and 7 are ordered sequences

of blow-ups. An ordered resolution of ¢ induces two basis of Pic(S)
e B={ep=m'H,e; =[E\], ..., e = [E]},
= {eh=n"H. ¢ = [Z]],.... ¢, = [£]}.
where H is a generic line. We can write ¢} as follows

k k
! / .
60:V60—2mi€i-, ej:vjeo—Zmijei,jzl.
i=1 i=1
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The matrix of change of basis

v Vi Vi
—mp  —mjp ... —Mig
M=
—Mg =My ... —Mik

is called characteristic matrix of ¢. The first column of M, which is the characteristic vector of

0, is the vector (v, —my,...,—my). The other columns
(Vi,—mii, ..., —my;)

describe the "behavior of E/": if v; > 0, then TC(Z]’-) is a curve of degree v; in PZ through the
points py of ¢ with multiplicity m,;.

Example 1.17. Consider the birational map
c: P2 -5 PZ, (z0:21:22) = (2122 1 2022 : 2021)-
The points of indeterminacy of ¢ are
P=(1:0:0), 0=(0:1:0), R=(0:0:1)
and the exceptional set is the union of the three following lines
A={z=0}, A={z=0}), A"={zn=0}.

First we blow up P; let us denote E the exceptional divisor and 2 the strict transform of D.

Set
21 =1u 21 =718
22 =uvy =151
In the coordinates (u,v) (resp. (ri,s1)) the exceptional divisor E is given by {u; = 0} (resp.

{s1 =0}) and AY (resp. A}) by {vi =0} (resp. {r; =0}).
On the one hand

1 1
(l/t],vl) — (ul,ulvl)(mzz) — (M1V1 Ve l) = <777> — <**>
U1 UV / (z1,2) U1 V1) (uy )
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and on the other hand

1 1 1 1
(rl,sl)—>(r1s175|)(11.22)—>(r|s1 :1:r1): <7,*> — (*,*) .
FIS1 81/ (z1,20) L ST/ (rysi)

Hence E is sent on Ay; as ¢ is an involution A, is sent on E.

Now blow up Qj; this time let us denote F the exceptional divisor and 9D, the strict transform
of @1 :

20 = U2 20 =128
22 = UV =15
In the coordinates (uz,v2) (resp. (r2,s2)) one has F = {uy = 0} and A} = {v, = 0} (resp.

F= {S2 = 0} and Az = {}’2 = 0})
We have

1 1 1 1
(u2,v2) = (U2, U2V2) (59.29) = (2 1u2v2 1 1) = | —, — ==
U2 U2V2/ (z,22) U2 Y2/ (u3.m0)

and

1 1 11
(I’Q,Sz) — (rzsz,sz)(m,zz) — (1 1Syt }’2) = <7,*> — (*, 7) .
1252 52/ (29,2) 7252/ (r52)

Therefore F is sent on A and A} on F.

Finally we blow up R»; let us denote G the exceptional divisor and set

20 = U3 20 =1383
21 = Uzvs3 2=1253
Note that
1 1 11
(u3,V3) — (u3,u3V3)(ZD‘Z]) — (V3 i1 M3V3) = —y— — | ——
Uz U3V3 /) () U3 V3 / (u3,v3)
and

1 1 1 1
(r3753) — (F3S3,S3)(ZO,ZI) — (l i3 r3S3) = (7 *> — (* *) .
(z0,21) (r3,83)

r3s3’ 53 r3’s3

One has G = {u3 = 0} and A} = {v3 = 0} (resp. G = {s3 =0} and A3 = {r; = 0}).
Thus G — A} and Ay — G. There are no more point of indeterminacy, no more exceptional

curve; in other words © is conjugate to an automorphism of Blpg, z,PZ.
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Let H be a generic line. Note that £, = E, Z, = F, Z3 = H. Consider the basis {H, E, F, G}.
After the first blow-up A and E are swapped; the point blown up is the intersection of A" and A” so
A — A+F+G. Then 6*E = H—F — G. Similarly we have

¢’ F=H—-E-G
6*G=H—-E-F

It remains to determine 6*H. The image of a generic line by G is a conic hence 6*H = 2H —mE —

myF —m3G. Let L be a generic line given by agzo + a1z1 + a2z2. A computation shows that
(uy,v1) — (MIMIVI)(z,.zg) — (u%\q supvy tuy) = uy(agva +ajuava +az)
vanishes to order 1 on E = {u; = 0} thus m; = 1. Note also that
e 2,
(u2,v2) = (uz,uzv7) 20,2) (uava : uzvy  u2) — up(agva + ajuava + az),
respectively
)
(u3,V3) — (”37”3"3)(2(.,z|) — (M3V3 Tuz M3V3) — U3 (a0V3 +a; +a2u3V3)

vanishes to order 1 on F = {u; = 0}, resp. G = {u3z = 0} so mp = 1, resp. m3 = 1. Therefore
6"H =2H—E—F - G and the characteristic matrix of ¢ in the basis {H, E, F, G} is

2 1 1 1
My = -1 0 -1 -1
-1 -1 0 -1
-1 -1 -1 0

Exercice 13. Let us consider the involution given by
p: PL - P2, (z0:21:22) --» (2021 : 25 : 2122).
We can show that My = M.
Exercice 14. Consider the birational map
T: PL s P, (z0:21:22) --» (25 : 2021 : 23 — 2022)-

We can verify that My = M.
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Solution 1. — Let us determine Pic(P{,). Consider the homomorphism of groups given by
0: Div(Pg) — Z, D — degD.
Let D be in ker0; write D as ZaD- where D; denotes a prime divisor given by a homogeneous

polynomial f; € C[zo,z1,. .., z,,] of some degree d;. Since Zal ;=0 one has: f = H /" belongs

to C(IP%)*, and by construction D = div f so D is a prime d1v1sor
Conversely any prime divisor is equal to div £  where g, h are polynomials of the same degree;
any principal divisor thus belongs to ker.

In other words ker 6 is the subgroup of principal divisors. So Div(P{.) / ker® =~ Z.
Solution 2. — Let us determine Pic(PL x PL) ? Set
h={0}xPL  m=PLx{0}  U=PLxPL~ (hUhy).

Since U is isomorphic to the affine space A2, every divisor on 7 is the divisor of a rational

function. Let us consider a divisor on Plc X ]P’(lc, then D)y = div$ so
D = divo+nhy +mhy

for some integers n and m. Furthermore D ~ nhy +miy. Hence Pic(PL x PL) is generated by the
classes of /; and hy. Obviously £ - iy = 1. Moreover

hy-hy ~ hy - ({oo} x L)
as hy ~ {oo} x PL. Since hy N ({0} x PL) = 0 one gets h? = 0. Similarly 43 = 0.

Solution 3. We can replace C and C’ by linearly equivalent divisors and so assume that p lies on
no component of C nor C’. Therefore obviously ©*C - *C' = C-C’, and n*C-E = 0.

Take C a curve passing through p with multiplicity 1. Its strict transform C meets E trans-
versely at one point which corresponds in E to the tangent direction defined at p by C. Thus
C-E=1.FromC=7"C—E (Lemma 1.7) and m*C - E = 0 we get E2 = —1.

Solution 4. Let us prove that
¢: Pic(S) ®Z — Pic(B1,,S) (D,n) = *D+nE

is an isomorphism. Every irreducible curve on Bl,S except E is a strict transform of its image in
S, hence ¢ is surjective. Assume that there is a divisor D on S such that t*D + nE = 0. Taking the
intersection with E we get that n = 0 and upon applying 7, we see that D = 0.
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Solution 5. Recall that if D =Y, a;D; is a divisor, and if all the a; are non zero, the support Supp D
of D is U;D,;.

Consider a differential form ® € Q?(S) such that p does not belong to Supp(div®). Since
n: Bl,S\E — S~ {p} is an isomorphism, obviously div(n*®) = n*(divw) over Bl,S~\ E. If x
and y are local parameters at p then @ = fdx A dy where f denotes an element of O, such that

f(p) # 0. Let us blow up p: set
xX=u
y=uv

Then w*® = 7" (f)udu Adv on S, and since T*(f) # 0 on E we get
div(tT*®) = t*(dive) + E
that is Kpj,s = T"Ks + E.
Solution 6. — Any element ¢ of Aut(PZ) satisfies Ind¢ = Exc¢ = 0.
Solution 7. — One has
Indo={(1:0:0),(0:1:0),(0:0:1)},Exco={z20=0}U{z1 =0} U{z2 =0}
Indp={(1:0:0),(0:1:0)},Excp={z0=0}U{z2 =0}
Indt={(1:0:0)}, Exct= {z2 =0}

Solution 8. — The linear system defined by G is the set of conics in ]P’é passing through (1:0:0),
(0:1:0)and (0:0:1).

The linear system defined by p is the set of conics in P2 passing through (1:0:0), (0:1:0)
and tangent to z; = 0.

The linear system defined by 7 is the set of conics in IP’?C passing through (1:0: 0) that are

tangent to z = 0, and osculate it.
Solution 9. —

e Any birational map of finite order is elliptic; any element of the following groups
Aut(P), {(ozo+P(ar), Bz +v)| e, pe C*,ye C, P € Clal}

is elliptic.
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e Any element of J of the form

a(z1)z0+b(z1)
(0(11)20 +d(z1) ’“)

(rM)?

with 357

€ C(z1) \ C where M denotes the matrix defined by

a(z1) b(z1)
c(z) d(z)

is a Jonquieres twist ([10]).

e Let ¢ be the birational self-map of ]P’é given by

3
0= (208 +8 208 nd 03+ +ud—3).

One has deg¢” ~ n?.

e Consider the family of birational maps (f¢) given by ([18])

21 —¢
fe= <z|+1f€,zo : )

z1+1

It

e ¢ = —1, then f; is elliptic,

e £ {0,1}, then f; is a Jonquitres twist,

€€ {1/2,1/3}, then f; is a Halphen twist,

€ € {Ug>41/k}, then fe is hyperbolic.

Solution 10 ([2], Theorem 2.7). As X lies in some projective space, one can assume that X = IP{.

Of course one can suppose that ¢(S) lies in no hyperplane of P¢. Hence ¢ corresponds to a linear

system . C |D| of dimension m on S.

If . has no base point, then ¢ is a morphism, and we are done.

Consider now the case where ¢ has a base point p;. Let m;: Bl, S — S be the blow-up of

p1. Then the exceptional curve E; occurs in the fixed part of the linear system ©}.”” C |r;D| with
some multiplicity k; > 1. That is the system .} C |t} D —k; E; | obtained by subtracting k; E; from
each element of 7}.% has no fixed component. It thus defines a rational map ¢; = ¢7;: Sy -—» P

If ¢; is a morphism, then we are done. Otherwise we repeat the process. Hence by induction we
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get a sequence T, oT,_j o...oN; of blow-ups and a linear system ., C |D,, = ;. D,,_| — k,E,| on
S, with no fixed part. Note that

D:=D} | —k2<D?

n—1-

Since .% has no fixed part D? > 0 for all k and so a finite number of blow-ups is needed. In other
words after a finite number of blow-ups one gets a linear system with no base points which defines
amorphism Sy — Pg.

Solution 11 ([2], Lemma 2.9). Suppose S affine, with ! (p) # 0, so that there is an embedding
1: § < A" The rational map 1 o¢’1: S --» A" is defined by rational functions Vi, ..., Wy;
furthermore one of them, for instance Y, is not defined at p, that is y; & Oy ,. One can write
as % with u, v in Oy ,, u and v coprime, and v(p) = 0. Let us consider the curve C on S defined
by ¢*v = 0. Denote by x; the first coordinate function on § C A"; on S one has ¢*u = x;0*v. It
follows that ¢*u = ¢*v =0 on C so that C = ¢~ ({u = v =0}). Since u and v are coprime the set
{u=v =0} is finite. Shrinking S’ if needed one can assume that {u = v =0} = {p}, and thus

C=¢""(p).

Solution 12 ([30]). Assume that y = !¢ is not a morphism. Let m be a point of S such that  is
not defined at m. On the one hand ¢(m) = p and ¢ is not locally invertible at m, on the other hand
there exists a curve in Bl,S" contracted on m by y~! (Exercise 11). This curve is necessarily the

exceptional divisor E obtained by blowing up.

Let ¢, g2 be two different points of E at which y~! is well defined and let Cj, G be two
germs of smooth curves transverse to E. Then ©((;) and n(() are two germs of smooth curve
transverse at p which are the image by ¢ of two germs of curves at m. The differential of ¢ at m is

thus of rank 2: contradiction with the fact that ¢ is not locally invertible at m.
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N
G G
E
q1 q2

/

v, n

/
‘/
p=0(m)
m q)
—1
v (G) v (G) (i) (G
S N

Solution 13. — We can show that M, = M.

Solution 14. — We can verify that M; = M.
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2 Generation of the Cremona group in any dimension
2.1 In dimension 2
Recall that 6 and p are the elements of Bir(PZ) given by
G = (ZlZz 12022 ZZoZl)7 p= (ZoZz 12021 IZ%)-
Theorem 2.1 ([31, 9]). — The group Bir(P2) is generated by Aut(P%) = PGL(3,C) and o:
Bir(P%) = (PGL(3,C), 6).
Let us remark that 6 = (21 : 22 : z0)p (21 : 22 : 20)p, hence

Bir(P2) = (PGL(3,C), p).

Definition 2.2. — Let ¢¢, 01, ..., &, € C(z0,z1,...,2,) be some rational functions; we define
‘ i
jac(90,01,. .., 0n) = det 3 € C(z20,215- -+ ,2n)-
2j1o<i, j<n
Definition 2.3. — If ¢ = (¢ : ¢ : ... : ¢,) is a birational self-map of P}, the jacobian determi-

nant of ¢ is defined to be jac(do,91,...,,). It is defined up to multiplication with the (n+ 1)-th
power of an element of C*, and has degree (n+1)(d —1).

Remark 2.4. — The jacobian determinant of ¢ € Bir(P{,) is a polynomial which determines the

hypersurfaces of Pf. where the map ¢ is not locally an isomorphism.

One can check that det jact is a perfect cube, and the jacobian determinant of any element ¢
in (PGL(3,C), 1) is a perfect cube ([24]); therefore

(PGL(3,C), 1) < Bir(P%).

Alexander showed Theorem 2.1; we will follow its proof ([1]). Let us first introduce some
definitions and notations. Let us consider a birational map ¢ of ]P% of degree d > 1 (note that
if d = 1, then according to Lemma 2.5 the map ¢ is an automorphism of PZ, and thus satisfies
Theorem 2.1). Denote by po, pi1, ..., px the base points of ¢, and by m; the multiplicity of p;.
Assume up to reindexation that

my > myp 2 ... 2> M.

Let S be a surface, and let p be a point of S. The exceptional divisor obtained by blowing up

p is called first infinitesimal neighborhood, and the points of E are called infinitely near p.

168



ABOUT THE CREMONA GROUP / JULIE DESERTI

The k-th infinitesimal neighborhood of p is the set of points contained in the first infinitesimal
neighborhood of a point of the (k — 1)-th infinitesimal neighborhood of p. On the contrary the
points of S are called proper point. The general quadratic birational map centered at p, g, and
r is the application (defined up to automorphism) ¥ € O(0) such that Indy = {p, ¢, r}.

In his proof Noether showed that for any ¢ € Bir(Pé) one can find a general quadratic bi-
rational map  such that degoy < deg¢®, and so by induction proved that ¢ = y;y>...y, up to
automorphism of IF’% where y; are general quadratic birational maps. But it is false for instance
if one of the base points is proper and the others in its infinitesimal neighborhoods. To give a
complete proof Alexander introduces the complexity of the linear system associated to ¢ defined
by

2¢ =d —my.

Geometrically it is the number of points except pg that belong to the intersection of a generic line

through pg and a curve of the linear system. Denote by C the set of points defined by
C={pili>1,m>c}

and by n the cardinal of C. Alexander’s idea is the following: apply to ¢ a sequence of general
quadratic birational maps in order to decrease the complexity ¢ until ¢ = 1 and the cardinal n until
n=0.

Lemma 2.5. — Let ¢ be a birational self-map of IP% of degree d. Let po, p1, ..., px be the base

points of ¢, and mo, my, ..., my be their multiplicity. Then
k
Y mi=d>—1 2.1
j=0
k
Y mim;—1)=(d—1)(d-2) (2.2)
j=0
k
Y mj=3d-3 (23)
j=0

Proof. One gets (2.3) from (2.1) and (2.2) as follows :

k k k
Zm_,v = 7ij(m_,vfl)+2m§
j=0 j=0 Jj=0

= —(d-1D)(d-2)+d*—1
= 3d-3
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Exercice 15. — Prove relation (2.1).

Exercice 16. — Prove equality (2.2).

Exercice 17. Prove that 2¢ > 0.
Exercice 18. Prove the following inequality: 2¢ > 1.

Exercice 19. Prove that
2c>my >my>...>m, >c.

Take a general quadratic birational map  centered at p, ¢, and r; the lines (pq), (gr), and (pr)
are blown down by y onto #/, p/, and ¢’

q, (qr) r

p q

Lemma 2.6. Ifd > 1, then n > 2. Hence my > %
Furthermore if n > 3, then the points p; withi € {1,2, ..., k} are not all aligned.

Exercice 20. Prove Lemma 2.6

Lemma 2.7. Compose ¢ with a general quadratic birational map centered at po, q, and r; the
complexity of the system is constant if and only if the point py, is the point of maximal multiplicity.

Otherwise the complexity of the system decreases.
Exercice 21. Prove Lemma 2.7

Lemma 2.8. Assume that there exist two points p; and p; in C which are not infinitely near, and
not infinitely near py. After composition with a general quadratic map centered at py, p;, and p;

then
e cither the complexity of the system decreases,

e or the cardinal of C decreases by 2.
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Proof. Let us compose ¢ with a general quadratic birational map whose base points are pg, p; and
Pj

/
Di pi

po Pj Po P

Denote by L’ the new linear system; the degree d’ of L’ is
d = 2d —mo—m; —m;

furthermore

Let C' be the set of base points with multiplicity strictly larger than ¢’. One has
d' =d+(d—mo—mi—mj) =d+ (2c—m; —mj).

In particular d’ < d.

After this composition

® Do, pi» and p; are not base points anymore (they have been blown up on lines);
o the other base points don’t change, and their multiplicity remains constant;

o there are three new base points py, pl, and p/;.

The multiplicity of the new base points is equal to the number of intersections (counted with
multiplicity) of the corresponding line (that is contracted) and the strict transform of a general

curve of the linear system. According to Bezout theorem one has

my=d—m;—m;
g .
m;=d—my—m;
m}:dfmgfm,'

Let us now distinguish two cases: the case where pj, is not the point of highest multiplicity and the
case where it is:
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e if pj is not the point of highest multiplicity, then the complexity of the system decreases
(Lemma 2.7);

o otherwise pj is the point of highest multiplicity, then the complexity of the system remains
constant (Lemma 2.7). According to Lemma 2.6 the point pj, belongs to C'. Moreover since
m; > ¢, mj > ¢, and d —mo = 2c then m; < ¢, m; < c that is p; and p; don’t belong to C".

Hence ' =n—2.

O

Lemma 2.9. Suppose that there exists a base point py in C which is not infinitely near po. After

composition with a general quadratic birational map
o there is no infinitely near base points above py (resp. py),
o there is no infinitely near base points above pj,
o the complexity of the linear system remains constant,
e the cardinal of C remains constant.

Proof. Let us compose ¢ with a general quadratic birational map centered at pg, px, and g such
that

e the lines (pog) and (prq) don’t contain base points;
e there is no base point infinitely near py in the direction of the line (piq);

e there is no base point infinitely near py in the direction of the line (pog).

/
P
pe Pk pi k
Po q Po ‘ a/‘ q
Dj Py Di

Remark that the degree increases; indeed, the degree of the new system is
d=2d—my—my=d+2c—m >d

and

my=d—mg>d—my=2c>m
my =d —mo—my =2¢—my <c
/
my

=d—myg=2c>c
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In particular the base point pj, is the point of highest multiplicity. The complexity remains
constant (Lemma 2.7). The cardinal of C is equal to the cardinal of C': we blow up two points of
C and get two new points.

We don’t transform a point infinitely near py (resp. po) in a point infinitely near pj nor ¢'.
Indeed assume by contradiction that we transform a point p; infinitely near py in a point infinitely
near ¢'. It means that py is in the direction of the line (popx). Denoting by D the divisor repre-
senting (popx) one has

(C-D)p, = my +my

SO
C-D=mo+mi+m; >my+2c=d

which is impossible by Bezout theorem. The same holds if we consider a point infinitely near pg.
O

Lemma 2.10. Assume that all points of C are infinitely near py. After composing with a general

quadratic birational map
e there is no infinitely near base point above the point of highest multiplicity pj,
o the complexity of the linear system remains constant,
e the cardinal of C decreases by 2.
Proof. Compose ¢ with a general quadratic birational map centered at py, r, and ¢ such that
e the lines (por), (pogq), and (rg) don’t contain base points of the new system;

e the lines (por), (poq), and (rq) are not in the direction of the points infinitely near py.

The degree strictly increases; indeed d’ = 2d —myq > d. Since the elements of the linear system
don’t pass through r and ¢ hence according to Bezout theorem pyj, is a point of multiplicity d. It is
thus the point of highest multiplicity. Moreover the complexity of the system is

2 =2d—my—d =d—my=2c.
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Any curve of the linear system intersects (por) and (poq) at d —mp = 2¢ points so ¢’ and r’ become
base points of the system, and m), = m;, = 2¢ > ¢ = ¢'. As a consequence n' =n+2.
The points infinitely near p are dispersed on the line ('¢’); thanks to the assumption on the

line (rg) there is no base point infinitely near pj,. O

Proof of Theorem 2.1. Let us first describe the two keysteps:

Step a: if there is one base point in C that is not infinitely near the base point py of highest
multiplicity go to "Step b"; otherwise let us apply Lemma 2.10 to ¢. We thus get that there is
no more infinitely near base points above pj, and n increases by 2. Then since there is no more
infinitely near base points above p|, one can apply Lemma 2.9 until all the points of C are distinct.
The complexity and the number of base points with multiplicity > ¢ except p{ remain constant
(still by Lemma 2.9). But now n > 3 and so the base points of C are not aligned (Lemma 2.6). Take
two points p; and p; such that p; and p, don’t belong to (pyp:), (pip,) and (p;p;). Let us now
apply two times Lemma 2.8 to p, and p,. If the complexity decreases come back to the beginning
of "Step a"; otherwise n + 2 decreases by 4 and pf, has no more infinitely near base points with

multiplicity > ¢ so let us go on with "Step b".

Step b is decomposed in two cases:

e either C contains two base points that aren’t infinitely near and one applies Lemma 2.8; if
the complexity decreases come to "Step a", otherwise come back to the beginning of "Step
b

e or one applies Lemma 2.9 then the base points are "separated” and one comes back to "Step

b".

Using this strategy one gets first that the complexity decreases until 1, and then that the cardinal
of C is zero. We thus have a system with at most one base point py, i.e. using Lemma 2.5 and the

definition of ¢ the two following equalities hold
my=3d—3
1=d—mg

Therefore d = 1 and m( = 0, that is after composing ¢ with well choosen general quadratic bira-

tional maps ¢ is an automorphism of ]P%:. |

174



ABOUT THE CREMONA GROUP / JULIE DESERTI

2.2 In higher dimensions

Theorem 2.11 ([27, 32]). — Let n > 3 be an integer. Any set of generators of Bir(P{.) contains

an infinite uncountable number of elements of Bir(P¢) \ Aut(Pg).

We follow Cantat’s notes based on the proof of Pan ([32]).

2.2.1 Exceptional hypersurfaces

Definition 2.12. — Let ¢ be a birational map of P, and let X be an irreducible hypersurface of
P{. We say that X is ¢-exceptional if there exists an open subset U of X which is mapped onto a

subset of codimension > 2 by 0.
Lemma 2.13. — Let ¢1, 92, ..., On be some birational self-maps of P{.. Consider
¢ = 0nlp—1...41.
The irreducible hypersurface X of P, is 0-exceptional if there exist an integer i between 1 and m,
and a §;-exceptional hypersurface X; such that X; is birational equivalent to X.
2.2.2 Jonquieres maps with prescribed exceptional set

Consider the homogeneous coordinates (zp: 2y : ...:z,—1) On IP’{’C’I, and the homogeneous coordi-
nates (u:v) on IP’(IC. Let Y be an irreducible hypersurface of degree d in IP’%’I, distinct from zg = 0.

Assume that 2 = 0 is a reduced homogeneous equation of Y. Consider the birational map
yy: P PG - P PG
defined by
((z() T2t Zpmn), (u v)) - ((zg TZpi.t z,,,l),(uzg : vh(z(),zl,...,z,,,l)).
The map Wy is birational, and Yy contracts the generic points of ¥ x ]P’fc onto the codimension 2
subset ¥ x {(1:0)} of P! x PL.
The projective variety HEI X IP’(IC is birationally equivalent to PZ; an explicit birational map
from P& x PL to P2 is
M PE X PL - PE, ((zo:21 e iznm1), (i v)) ==» (uzo:vzo vzrt...:vzu_1).
Conjugate Wy by 1, and set X =1 (Y x PL); since 1 blows down
Y =x{1:0})~{u=0}

onto (1:0:0:...:0) € PZ one gets:
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Lemma 2.14. — For any irreducible hypersurface Y of IP’&’;I of degree d there exist a birational
self-map Oy of P{, of degree d + 1, and a hypersurface X of P{. such that

e X is birationally equivalent to 'Y x IP’(E,
o X is Qy-exceptional.

In case n = 3 the previous statement says that: for any irreducible curve C in IP% of degree ¢

there exists ¢¢ € Bir(P) of degree d + 1, and a hypersurface X in P2, such that
o X is birationally equivalent to C x P,

e and X is ¢c-exceptional.

Consider now the particular case of smooth plane cubics: the set of these curves is a one-
parameter family so according to Lemma 2.13 one gets Theorem 2.11 for n = 3. More generally
one concludes as follows.

2.2.3 Stable equivalence

Definition 2.15. — Let Y, and Y’ be two varieties; Y is m-stably equivalent to Y if there exists a
birational map from ¥ x P{ to Y’ x P{.

Remark 2.16. — Be careful there exist complex projective varieties Y of dimension n > 3 such

that Y is not rational but Y is stably equivalent to Pg..

Lemma 2.17. — Let Y and Y' be two smooth irreducible hypersurfaces of ]P’("{1 of degree > n—+ 1.

IfY and Y’ are m-stably equivalent, then' Y and Y’ are isomorphic.

Lemmas 2.13, 2.14, and 2.17 imply Theorem 2.11.

2.2.4 A similar argument to Gizatullin’s one

Let us consider the birational involution G, of P{; defined by

o, = (HZ,'SHZ,’Z. HZ,)
l‘;% il;Ul l’;l:’L

Definition 2.18. — A monomial map of P{, is a birational self-map of IP{. of the form

(alzfllnzlzllz . sz,azzl{lzlzgzz o ZZZ”, . 7“:117”113"2 . zﬁrm)
in the affine chart zo = 1 with (o1, 02, ...,a,) € (C*)" and [a,-j} 1<i,j<n € GL(n,Z).
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Blanc and Heden prove that (G, Aut(IP%.)) # Bir(IP.) for n odd:

Theorem 2.19 ([S]). — If n is odd, there are monomial maps of P¢. which do not belong to
(O, Aut(PR)).

The idea of the proof is the same as Gizatullin’s. They prove the following statement:

Proposition 2.20 ([S]). — Assume n odd. The jacobian determinant of any element of (G,,, Aut(IP{.))
is equal to oP? for some o € C* and some homogeneous polynomial P € Clzo,z1,---+2n]-

Corollary 2.21. — Suppose n odd. The quadratic birational involution of P(, given by
(2122 $2031 12022 ¢ ZoZn)
does not belong to (G,, Aut(Pg)).

Exercice 22. Let y € Czo,z1, . - . ,2:)a be a homogeneous polynomial of degree d € N, and ¢, 01,

<oy On € C(20,21, - - -, 2n)e be homogeneous rational functions of degree e € Z . {0}. Prove that

jac(Who, wo1,..., w,) = <1 + §>j30(¢0,¢1,~--7¢n)‘v”+'-

n
Exercice 23. Using Exercice 22 prove that jacc, = n(—1)" Hz,'-'_],
i=0

Exercice 24. Let 0 = (¢o: ¢1:...:0,) and Y= (Yo : Y : ... : y,) be two birational self-maps of
Pt. Setd; = degd, and dr = degy.
Assume that deg(¢y) = d;d; then the chain rule states that

jac(oy) = y* (jaco) jacy

where y*(jac ¢) is obtained by replacing each z; with y; in jac¢.
If deg(¢w) = didy —m for m > O there exists a homogeneous polynomial Q of degree m that
divides the formal composition of ¢ and y. Prove that

dydy —m\ y*(jacd)jacy
dida Qn+1 )

jac(oy) = (
Deduce from it the Proposition 2.20.
Exercice 25. Prove Corollary 2.21 : compute the jacobian determinant of
(212212021 1 20227 -+ 2 202n)

and conclude with Proposition 2.20.
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Solution 15. — Let . be the linear system defined by ¢. Consider two curves C and D of .&7.
According to Bezout theorem one has C- D = d?. Blow up IP’%: at po, and denote by C’, resp. D’

the strict transform of C, resp. D; according to Lemma 1.7

C'-D' = (n*C—myE) - (n*D —moE)

SO
C'-D'=7"C-n*D —7*C-myE — moE -7*D +moE - moE
that is
C'-D' =7n*C-n*"D—n*C-mpE —moE -7*D — m}
hence
C'-D'=C-D—m}
and finally
d=C.-D=C"-D +m}.
The points py, pa, ..., px are still points of multiplicity m,, ma, ..., m. By induction one has
ok
d*=C-D+ Y. m;
Jj=0
where C. , Tesp. D is the strict transform of C , resp. D after the blow up of po, p1, ..., pr. Moreover
the curves C and D intersect at only one point that does not belong to { POy Ply---s pk}; hence
C-D = 1. Therefore .
=14y m}
j=0

Solution 16. — Consider a curve C in IP% that belongs to the linear system defined by ¢. Let
: Blpolp%; — IPQZC be the blow-up of pg, and C’ be the strict transform of C. One has (Proposition
1.9)
Kpy, p2 =T Kp2 +E
and so
Kpy, 52 -C' =7 Kpz - C+my.

By induction one gets
k

Ks-C=Kp-C+ Y m;
T L
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where S = Bl

to Riemann-Roch theorem and adjunction formula one obtains

Ks-C=2g(C)—2—C?

porpt o pe P, and C is the strict transform of C. The curve C is smooth so according

where g(C) denotes the real genus of C, that is the topological genus of a desingularization of C.

So

k ~ ~
Kp -C+Y mj=2g(C)—2—C".

j=0

Since g(C) = 0 one has

k
K]Pg:-chjgomj:

. k
ButC* = C*— )" mj and Ky, = —3H thus
=0 ‘

k k
24) & =3d+Y mi=-2-C+Y m

j=0
k

& 3d+ Y mi=-2-d*+Y m

j=0

—2-C?

j=0
k

J=0

k
& d*-3d+2= Y mj(m;—1)

& (d—1)(d-2)

Jj=0

k
=Y mj(mj—1)
j=0

2.4)

Solution 17. The degree of elements of the linear system defined by ¢ is d, hence the multiplicity

of a point is bounded by d.

Solution 18. If an homogeneous polynomial P of degree d has a point of multiplicity d then

(P =0) is not irreducible, it is the union of d lines.

Solution 19. According to Bezout’s theorem the line through po and p; intersects any curve of the

linear system at d points counted with multiplicity. But the line through py and p; intersects any

curve of the system at po with multiplicity mg so m; < d —mgy = 2¢. We thus have the inequalities
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Solution 20. One has: ¢(2.2) — (¢ — 1) (2.1) gives on the one hand

k k
chl m; — C*I)Zmizzzmi(mifc)

i=0 i=0

and on the other hand
c(d=1)(d=2)—(c—1)(d®>=1)=(d—1)(d —3c+1).
Hence

k
Zm,-(m,-fc):(dfl)(df?chrl) 2.5)

Since 3c— 1> § >0 and m,; —c < 0 for all i > 0 then

n k
Zmi(mi —c) > Z mi(m; —c)
i=0 i=0
and according to 2.5

Zm,l ¢)>(d—1)(d—3c+1)

S0 Zm, m; —c¢) >d(d—2c) =d(mp—c). But

Y. il — ) = mo(mo — )+ Y milm; <)

i=0 i=1

therefore

Xn:m,-(mi—c) > d(my—c) —mp(my —¢) = (d —myg) (mo — ¢) = 2c(my — c).

Since 2¢ > my > mp > ... > m, > c one has

n

2c Z(m, —c)>2c(mp—c)

andasc¢ >0 .,
Z(mi ) >my—c
i=1
But m; < mg thus n > 2.
From mg > m; for all i one has
n
OZZ ZmlzmeZm,f 1)(d+1-3myp).

i=0 i=l

Sod+1—3my <0, andmy> 4.
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Solution 21. The complexity of the system after composing with a general quadratic birational

map centered at py, ¢, and 7 is

2 =d' —m),

/
‘max 2d —my— Mg — My — Mg

/ /
= d—mo+my—my,,

/ /
= 2C+m0 — Mpmax

/
where my,,

and ¢ = ¢ if and only if mf, = m],,.

denotes the highest multiplicity of the base points of the new system. Therefore ¢ < ¢

Solution 22. See [5, Lemma 2.3]

e

Solution 23. [5, Corollary 2.4] Since 6, = (M

20 "

: z%) with y = [T7=) (z:)"~". It follows by

I

Exercice 22 that

. n+1 . — — — n n - n—
o) = (1427 Y dne(zp i oy W =1 [

i=0

Solution 24. [5, Proposition 2.6] The formula

didy —m\ y*(jaco)jacy
did, o

jac(¢y) = (

directly follows from Exercice 22.

Since 7 is odd, we see that if the result is true for ¢ and , then it is true for the composition

Owy. It remains to note that

e as we have seen jac(c,) = n(—1)" [T/-(z)" ", that is jac(c,) is a square multiplied by a

constant when 7 is odd,

e if ¢ is an automorphism of P, thenjac(¢) belongs to C.

Solution 25. [5, Corollary 2.7] Since
jac(zi1z2 12021 12022 1 - 1 202) = 2207212

the result follows then from Proposition 2.20.
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3 Action of the Cremona group on the Picard-Manin space and ap-

plications

3.1 Picard-Manin space and Bubble space

Let S, S; be some complex projective surfaces. Any ;: S; — S birational morphism induces an
embedding
7" NS(S) — NS(S;)

of Néron-Severi groups. We say that 7, is above 7t if TEI"TCZ is regular. Starting with two birational
morphisms one can always find a third one that covers the two first. Therefore the inductive limit
of all groups NS(S;) for all surfaces S; above S is well-defined. It is the Picard-Manin space Zg

of S. Structures invariant by the morphisms 7; go through the limit and so Zg is provided with
e an intersection form,
e anefcone Z§ =1imNS™(S;),
—

e a canonical class which can be seen as a linear form Zg — Z.

Consider all surfaces S; above S that is all birational morphisms ;: S; — S. Take w;: S| —
S, Mp: So = S, and p; € Sy, p2 € S2. The point p; is identified with p, if nl’lnz is a local
isomorphism that sends p» onto p;. The Bubble space B(S) of S is the union of all points of all
surfaces above S modulo the equivalence relation induced by this identification.

If p € B(S) is represented by a point p on a surface S; — S we denote by ¢, the divisor class

of the exceptional divisor of the blow-up of p. Then

ep-ep=—1
ep-eq=0if p#q
Exercice 26. — Prove the previous formulas in case where p is a point of P2, §| = Blp]P%, gisa

point on E,,, and S, = B1,S;.

Embed NS(S) as a subgroup of Zg. This finite dimensional lattice is orthogonal to e,, for any
p € B(S). Furthermore

Zs={D+ Y ape,|DENS(S),a, R}
PEB(S)
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note that a, = 0 except finitely many. The completed Picard-Manin space Zs of S is the L*-
completion of Zg, that is

Zs={D+ Y, ape,|DENS(S),a,€R,Y a) < oo}.
PEB(S)

Furthermore the intersection form on NS(S;) induces an intersection form with signature (1,c0) on

Zg. Let Z; be the nef cone of Zg, and LZg = {d € Zg|d -d = 0} be the light cone of Zs.

3.2 Hyperbolic space and isometries
The hyperbolic space Hg of S is then defined by
Hs={de€Zs|d-d=1}.

Note that Hy is an infinite dimensional analogue of the classical hyperbolic space H". The distance
on H is defined by: for d, d’' € Hy

cosh(dist(d,d")) =d-d'.

The geodesics are intersections of Hg with planes. The projection Hg — P(Zg) is one-to-one, the

boundary of its image is the projection of the cone of isotropic vectors of Zg. Hence
dHs = {R*d|d € Zg ,d-d =0}.

If ©: §' — S is a birational morphism, we get an isometry ©* (and not simply an embedding)
between Hg and Hg. This allows to define an action of Bir(S) on Hs. Let ¢: S — S be a birational
map; there exists S’ a surface and 7;: S’ — S, Tp: § — S two birational morphisms such that

o= nznl’l (see for example [2]). One can define the isometry ¢, of Hg by
90 = (m3)"'mj.

The isometries of Hy are classified in three types ([6, 23]). The translation length of an
isometry ¢, of H is defined by

L(9.) = inf {dist(p,0s(p)) | p € Hs}.
If the infimum is a minimum, then

e cither it is equal to 0 and ¢, has a fixed point in Hy, ¢, is thus elliptic,
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e oritis positive and ¢, is hyperbolic. Hence the set of points p € Hg such that dist(p, ¢« (p))
is equal to L(¢s) is a geodesic line Ax(¢s) C Hy. Its boundary points are represented by
isotropic vectors (¢ ) and 0i(¢s) in Zg such that

0 (0(00)) = 1(0) () du((04)) = @aw.).

The axis of ¢, is the intersection of Hg with the plane containing ®(¢.) and o(¢, ). Forall
p € Hg one has
- 0u(p)

= ol(d) lim

- 0.5(p)
lim ke A(0)

k=00 7\,((]))

= ().

When the infimum is not realized, L(¢) = 0 and ¢, is parabolic: ¢, fixes a unique line in
LZg; this line is fixed pointwise, and all orbits ¢?(p) in Hg accumulate to the corresponding
boundary point when n goes to =oo.

Exercice 27. — Let ¢, be a hyperbolic isometry; it acts as a translation along Ax(¢.). Let us
prove that this length of translation is L(¢s) = logA(d).
One can normalize 0.(.) and @(¢,) such that 0(¢a) = ©(¢) = 1; one has

Ax(de) = {u(x(¢.) +vo (0 ) uv = 1}.

Set p = 0l(9s) + (0, ); the point p lies on Ax(¢, ). Compute 2 cosh(dist(p,de(p))), and 2cosh(L(ds)).
Conclude.

There is a strong relationship between classification of birational maps of IP% and the classifi-

cation of isometries of H]P,zc :

Theorem 3.1 ([7]). — Let ¢ be a birational map of the complex projective plane. Then
e 0 is a elliptic map if and only if Ge is an elliptic isometry;
o O is a twist if and only if §e is a parabolic isometry;
e O is a hyperbolic map if and only if Ge is a hyperbolic isometry.

Remark 3.2. — Let ¢ be an element of Bir(IPZ), and let / be the class of a line viewed as a point
in Hps . Then
[o}
O (h) = (deg9)h — Zapep
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where a,, is the multiplicity of the linear system ¢,|O(1)] at the point p. Since  does not intersect
any of the e, one gets

cosh(dist(h, ¢u (1)) = - 0u(h) = degd
this establishes a link between deg¢" and dist(h, 97 (h)).

Exercice 28. — Take a generic element ¢ in Biry(PZ). Then

Ind¢ = {po, p1, p2}, Exc® = {Lpop,>Lpip2» Lpops }+
Ind¢7l = {407 q1, 72}7 EXC¢71 = {anql 7Lq1q27anqz}

Let h be the class of a line in PZ. Determine ¢, (h).
Assume ¢ is an isomorphism on a neighborhood of p, and ¢(p) = ¢; determine ¢4 (e)).

Suppose Ly, 4, is blown down onto pg by ¢! ; determine ¢ (e, ).

Exercice 29. — Any set {po = (1:0:0), p1, p2} of three distinct and non colinear points is the
indeterminacy set of a Jonquires map of degree 2. Any set {po = (1:0:0), p1, p2, p3} of four
distinct points such that

e no three of them are on a line through p, and
e there is no line containing p;, p, and p3

is the indeterminacy set of a Jonquieres map of degree 3. More generally on the complement of a
strict Zariski closed subset of J; the points pg, pi, ..., p2q—2 form a set of 2d — 1 distinct points
in the complex projective plane. Hence the base points of a generic element ¢ of Aut(IF%) X Ja X
Aut(lP%) are po = (1:0:0) and 2d — 1 distinct points py, pa, ..., pag—2 of IP%.

Determine e (7).
3.3 Some applications

3.3.1 Tits alternative

Linear groups satisfy Tits alternative. Recall that a group G is solvable if there exists an integer k
such that G®) = {id} where G(¥) = G and for k > 1

G0 = [G*V G* D) = (aba b |a, b e G*).

Theorem 3.3 ([35]). Let k be a field of characteristic 0, and I be a finitely generated subgroup of
GL(n,k). Then
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o cither I contains a non abelian, free group;

e or I contains a solvable subgroup of finite index.

The group of diffeomorphisms of a real manifold of dimension > 1 does not satisfy Tits al-
ternative ([22]). The group of polynomial automorphisms of C? satisfies Tits alternative ([29]);
to prove it Lamy uses the structure of amalgamated product of Aut(C?) that implies that Aut(C?)
acts on a tree ([34]). Using the action of Bir(]P’%) on ZP; Cantat studied the finitely generated
subgroups of Bir(lP%) and establishes the following statement

Theorem 3.4 ([7]). The Cremona group Bir(]P%) satisfies Tits alternative.

3.3.2 Simplicity

Let us recall that a group is simple if it has no non trivial, proper and normal subgroup. The
normal subgroup of G generated by f € G is

(hfh~ | heG).
Remark that Aut(C?) is not simple: let ¥ be the morphism defined by
Aut(C?) - C* 0 +— detjacd

its kernel is a proper normal subgroup of Aut(C?). Danilov has established that ker'¥ is not simple

([13]); more precisely using [33] he proved that the normal subgroup generated by (ea)'® where
a= (y7 7X) e= (xsy+3x575x4)

is a strict subgroup of {¢ € Aut(C?)|¥(¢) = 1}. More recently Furter and Lamy gave a more
precise statement ([21]).

What about the Cremona group ? A birational map ¢ is tight if
e (O, is hyperbolic;

o there exists a positive number € such that: if y is a birational map, and if ye(Ax(¢s)) con-
tains two points at distance € which are at distance at most 1 from Ax(¢.) then Yo (Ax(ds)) =

Ax(9a);

o if y is a birational map and W, (AX(9.)) = Ax(¢s), then yoy~! = ¢*1.
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Using the action of Bir(Pé) on zp% Cantat and Lamy proved that:

Theorem 3.5 ([8]). Let ¢ be an element of Bir(IP%C). If O is tight, then O generates a non trivial,
strict and normal subgroup of Bir(]P’é) for some positive integer k.

Asa consequence:

Corollary 3.6 ([8]). The Cremona group Bir(]P%) contains an uncountable number of strict nor-
mal subgroups.

In particular Bir(P2) is not simple.

3.3.3 Homomorphisms from lattices into the Cremona group

Using the embedding of Bir(IF’é) into the Picard-Manin space, Cantat proved the following result:
Theorem 3.7 ([7]). Any homomorphism with infinite image from a discrete Kazhdan group into
Bir(P) is conjugate to a homomorphism into PGL(3,C).

In particular, this result applies to any lattice I" in a connected simple Lie group with prop-
erty (T)® but left open the problem of classifying homomorphisms from lattices in the groups
SO(n,1) and SU(n,1) into Bir(P%). There exist, for some values of n, injective homomorphisms
from lattices in SO(n,1) to the Cremona group ([8, 19]). Delzant and Py focus on the case
SU(n,1):

Theorem 3.8 ([15]). Let I" be a cocompact lattice in the group SU(1,n) withn > 2. If p: T —

Bir(IF%) is an injective homomorphism, then one of the following two possibilities holds

e the group p(I') fixes a point in the Picard-Manin space;

o the group p(I') fixes a unique point in the boundary of the Picard-Manin space.

3.3.4 Solvable subgroups

The study of solvable groups started a long time ago, and any linear solvable subgroup is up to
finite index triangularizable (Lie-Kolchin theorem, [28, Theorem 21.1.5]). The assumption "up to

finite index" is essential: for instance the subgroup of PGL(2,C) generated by the matrices

L]

is isomorphic to &3 so is solvable but is not triangularizable.

3Informally, a locally compact topological group G has property (T) if it satisfies the following property: if G acts
unitarily on a Hilbert space and has "almost invariant vectors", then it has a nonzero invariant vector.
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Theorem 3.9 ([16]). Let G be an infinite, solvable, non virtually abelian subgroup of Bir(]P%).
Then, up to finite index, one of the following holds

1. any element of G is either of finite order, or conjugate to an automorphism of P%;

2. G preserves a unique fibration that is rational, in particular G is, up to conjugacy, a sub-
group of PGL(2,C(y)) x PGL(2,C);

3. G preserves a unique fibration that is elliptic;
4. G is, up to birational conjugacy, a subgroup of

{(y?,x'y"), (o, By) o, p e C*}
P q

ros
G preserves the two holomorphic foliations defined respectively by the 1-forms

where M = denotes an element of GL(2,7Z) with spectral radius > 1. The group
o xdy + B ydx o xdy + B2 ydx
where (a1, B1) and (02, B2) denote the eigenvectors of 'M.

Furthermore if G is uncountable, case 3. does not hold.

Examples 3.10. e Denote by S3 the group generated by the matrices

S

As we recall before S3 ~ &3. Consider now the subgroup G of Bir(P2) whose elements

P q
ros
order, and G is solvable; it gives an example of case 1.

are the monomial maps (x”y?,x"y") with [ } € S3. Then any element of G has finite

e The centralizer of a birational map of IP’%C that preserves a unique fibration that is rational is
virtually solvable ([10, Corollary C]); this example falls in case 2 (we will give some details

in Example 3.17).
e In [12, Proposition 2.2] Cornulier proved that the group

(1Y), (y+1), (v,x))

is solvable of length 3, and is not linear over any field; this example falls in case 2. The

invariant fibration is given by x = cst.
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Exercice 30. Give a subgroup of Aut(P2) that illustrates case 1.
Exercice 31. Give a subgroup of Aut(C?) that illustrates case 1.

Remark 3.11. In case 1. if there exists an integer d such that deg¢ < d for any ¢ in G, then there
exists a birational map y: M --» IP% such that W~ Gy is a solvable subgroup of Aut(M) (see the
end of the section for more details). But there is some solvable subgroups G with only elliptic

elements that do not satisfy this property: the group
E = {(ox+P(y),By+7) |0, B C",y€ C, P € Cll} C Aur(C?).

We will prove Theorem 3.9: we first assume that our solvable, infinite and non virtually
abelian, subgroup G contains a hyperbolic map, then that it contains a twist and no hyperbolic
map, and finally that all elements of G are elliptic.

A. Solvable groups of birational maps containing a hyperbolic map

Let us recall the following criterion (for its proof see for example [14]) used on many occasions
by Klein, and also by Tits ([35]):

Lemma 3.12 (Ping-Pong Lemma). Let H be a group acting on a set X, let 'y, I, be two subgroups
of H, and let T be the subgroup generated by I'y and I'y. Assume that T'y contains at least three
elements, and 'y at least two elements. Suppose that there exist two non-empty subsets Xy, X, of
X such that X, ¢ X,, and for any y € Ty \ {id} and any y' € T, \ {id}

’Y(Xz) C X 'Y/(Xl) CXs.
Then I is isomorphic to the free product I'y xI',.
The Ping-Pong argument allows us to prove the following:

Lemma 3.13 ([16]). A solvable, non abelian, subgroup of Bir(]P%) cannot contain two hyperbolic
maps ¢ and \y such that {o(9.), a(0s) } # {@(y.), a(y.)}.

Proof. Assume by contradiction that {@(da), t(¢)} # {®(Ws), () }. Then the Ping-Pong
argument implies that there exist two integers n and m such that y”" and ¢ generate a subgroup of
G isomorphic to the free group F; (see [7]). But (¢, ) is a solvable group: contradiction. |

Let G be an infinite solvable, non virtually abelian, subgroup of Bir(ﬂ%). Assume that G
contains a hyperbolic map ¢. Let o(¢,) and @(¢.) be the two fixed points of ¢, on dHypz, and
Ax(ds) be the geodesic passing through these two points. As G is solvable there exists a subgroup
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of G of index 2 that preserves o(¢s ), (s ), and Ax(¢s) (see [7, Theorem 6.4]); let us still denote
by G this subgroup. One thus has a morphism k: G — R’ such that

for any £ in Z; lying on Ax(d).

Gap property:

If ¢ € Bir(PPZ) is a hyperbolic map, then A(¢) is an algebraic integer with all Galois conjugates
in the unit disk, that is a Salem number, or a Pisot number. The smallest known number is the

Lehmer number A; ~ 1, 176 which is a root of
X104 x? X7 - x0—x°—x* - X34 X +1.

Blanc and Cantat prove in [3, Corollary 2.7] that there is a gap in the dynamical spectrum A =
{M¢)|¢ € Bir(PZ)}: there is no dynamical degree in ]1,A.][.

The gap property implies that in fact k: Y — k() such that y,(¢) = x(y)¢ for any ¢ in Z]P,;‘
lying on Ax(9,) is a morphism from G to Z. Furthermore ker k is an infinite subgroup that contain;‘
only elliptic maps. Indeed it is clear that the set of elliptic elements of G coincides with ker o; and
[G,G] C kerai so if kero is finite, G is abelian up to finite index which is impossible.

Elliptic subgroups of the Cremona group with a large normalizer:

Consider in P2 the complement of the union of the three lines {x = 0}, {y = 0} and {z =
0}. Denote by U this open set isomorphic to C* x C*. One has an action of C* x C* on U by

translation. Furthermore GL(2,Z) acts on U by monomial maps

b } = ((ny) = (Py7,2y))
ros
One thus has an injective morphism from (C* x C*) x GL(2,Z) into Bir(P%). Let Gioric be its
image.

One can now apply [15, Theorem 4] that says that if there exists a short exact sequence
l1—A—N-—B—1

where N C Bir(P2) contains at least one hyperbolic element, and A C Bir(P?) is an infinite and
that fixes a point in Hp% , then N is up to conjugacy a subgroup of Gy.ric. Hence up to birational
conjugacy G C Gioric-

One can now state:
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Proposition 3.14 ([16]). Let G be an infinite solvable, non virtually abelian, subgroup ufBir(]Pé).
If G contains a hyperbolic birational map, then G is, up to conjugacy and finite index, a subgroup
of

((Py?,x"y"), (oux, By) o, B € C7)

P 9
ros

where [ } denotes an element of GL(2,7Z) with spectral radius > 1.

B. Solvable groups with a twist

Consider a solvable, non abelian, subgroup G of Bir(]P%). Let us assume that G contains a
twist ¢; the map ¢ preserves a unique fibration ¥ that is rational or elliptic. Let us prove that any
element of G preserves F. Denote by o(ds) € BH[P;C the fixed point of ¢,. Take one element in
LZP% still denoted ou(¢s) that represents o(¢,). Take @ € G such that ¢(ou(ds)) # 0t(¢s). Then
v = oo~ is parabolic and fixes the unique element () of LZJP’%C proportional to @(ou(¢)).
Take € > 0 such that U(a(P.),€) N U((Y,),€) = 0 where

U(oue) = {{ € LZp |0 L <e}.
Since . is parabolic, then for r large enough the inclusion
Ve (U(a(de).8)) C U(a(ye).€)
holds. For m sufficiently large
ove(U(a(de),€)) C (TU((00),€/2)) S (U(U(00).€)).-

Hence ¢7'y7 is hyperbolic. You can by this way build two hyperbolic maps whose sets of fixed
points are distinct: this gives a contradiction with Lemma 3.13. So for any ¢ € G one has :

o(de) = (@, ); one can thus state the following result.

Proposition 3.15 ([16]). Let G be a solvable, non abelian, subgroup of Bir(P%) that contains a
twist ¢. Then

o if 0 is a Jonquieres twist, then G preserves a rational fibration, that is up to birational
conjugacy G is a subgroup of PGL(2,C(y)) x PGL(2,C),

o if ¢ is a Halphen twist, then G preserves an elliptic fibration.

If G is uncountable, then ¢ is a Jonquiéres twist.

Remark 3.16. Both cases are mutually exclusive.
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Example 3.17. If ¢ € Bir(]P%) preserves a unique fibration that is rational then one can assume
that up to birational conjugacy this fibration is given, in the affine chart z =1, by y = cst. If ¢
preserves y = cst fiberwise, then

e ¢ is contained in a maximal abelian subgroup denoted Ab(0) that preserves y = cst fiberwise

17D,
o the centralizer of ¢ is a finite extension of Ab(¢) (see [10, Theorem B]).

This allows us to establish that if ¢ preserves a fibration not fiberwise, then the centralizer of ¢ is
virtually solvable ([10, Corollary C]). For instance if ¢ = (x+a(y),y+1) (resp. (b(y)x,By) or
(x+a(y),By) with p € C* of infinite order) preserves a unique fibration, then the centralizer of ¢
is solvable and metabelian ([10, Propositions 5.1 and 5.2]).

C. Solvable groups with no hyperbolic map, and no twist
Let M be a smooth, irreducible, complex, projective variety of dimension n. Fix a Kihler form

o on M. If £ is a positive integer, denote by x;: M‘ — M the projection onto the i-th factor. The
‘

manifold M" is then endowed with the Kihler form Zx,-*w which induces a Kéhler metric. To any

i=1
¢ € Bir(M) one can associate its graph I'y C M x M defined as the Zariski closure of

{(2,0() €M x M|z € M~ Tndg}.
By construction Iy is an irreducible subvariety of M x M of dimension n. Both projections xi,

X2: M X M — M restrict to birational morphisms x1, x3: Iy — M.

The total degree tdeg ¢ of ¢ € Bir(M) is defined as the volume of I'y with respect to the fixed
metric on M x M:

d _ % % n: * n'
tdeg ¢ /1}, (x1m+x20)) /M (0)+¢ 03)

~Ind¢
Let d > 1 be a natural integer, and set
Biry(M) = {¢ € Bir(M) |tdeg < d}.

A subgroup G of Bir(M) has bounded degree if it is contained in Biry (M) for some d € N*.
Any subgroup G of Bir(M) that has bounded degree can be regularized, that is up to birational

conjugacy all indeterminacy points of all elements of G disappear simultaneously:

Theorem 3.18 ([36]). Let M be a complex projective variety, and let G be a subgroup of Bir(M).
If G has bounded degree, there exists a smooth, complex, projective variety M, and a birational
map : M' —~» M such that W' G\ is a subgroup of Aut(M").
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Solution 26. — Let p be a point of ]P let S; be the surface obtained by blowing up ]PC at p, and
let £, be the exceptional divisor of this blow-up. Consider a point g on E),; denote by S, the surface
obtained by blowing up ¢ and by E, the associated exceptional divisor. Both e, and e, belong to
the image of NS(S,) in Zﬂ% . Let E,, be the strict transform of E), in S». Then e, corresponds to
E,+E,; and ¢, to E,. Hence

e,,-e,,:Eé+E§+2E,,-E =2-1+2=-1
ep-eg=(Ep-E)+E;=1—1=0if p#q

Solution 27. — As p = a/(¢s) + 0(¢s) € Ax(ds) then

0.(p) = 55+ MO)0(0.).

Since (D.( (¢.)) =

( (0s)) = A(§)®(4) we have:

2cosh(dis(p.0u())) = 29-0u(p) = M)+ 55

Furthermore

_L(04)
2cosh(L(9s)) = %) + oL(04)

Solution 28. — If ¢ is an isomorphism on a neighborhood of p, and ¢(p) = g, then da(e,) = e,.
If Ly, 4, is blown down onto po by ¢!, then

Oe(epy) =h—eq — ey Oo(h) =2h—eqy —eq, — ey
where £ is the class of a line in ]P’é.

Solution 29. — One has
2d4—2

Gu(h) =dh—(d—1)ep, — Z ep,
where the p;’s are generic distinct points of ]P%.
Solution 30. A subgroup of Aut(PZ) that illustrates case 1. is
{(ox+By+v.8y+€) o, § € C*, B, v, e € C} C Aut(PE).
Solution 31. A subgroup of Aut(C?) that illustrates case 1. is

E={(ox+P(y),py+7)|a, p€C*,yeC,PCly]} C Aut(C?).
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