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Índice

Presentación 9

Teorı́as de Galois 13
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About the Cremona group
Julie Déserti

Université Paris Diderot, Sorbonne Paris Cité, Institut De Mathématiques  
de Jussieu-Paris Rive Gauche, UMR 7586, CNRS, Sorbonne Universités,  

UPMC Univ Paris 06, F-75013 Paris, France

E-mail address: deserti@math.univ-paris-diderot.fr 

145



147

168

182

J. DÉSERTI

Contents

1 First definitions and properties

2 Generation of the Cremona group in any dimension 

3 Action of the Cremona group on the Picard-Manin space and aplication 

References 194

136 VIII ESCUELA DOCTORAL INTERCONTINENTAL DE MATEMÁTICAS PUCP - UVA

ABOUT THE CREMONA GROUP

1 First definitions and properties

1.1 Divisors and blow-ups

Definition 1.1. — Let X be an algebraic variety. A prime divisor on X is an irreducible closed
subset of X of codimension 1.

Examples 1.2. • If dimX = 2, i.e. if X is a surface, then the prime divisors of X are the
irreducible curves that lie on it.

• If X = Pn
C, then the prime divisors are given by the zero locus of irreducible homogeneous

polynomials.

Let us set

Div(X) =
{ m

∑
i=1

aiDi |m ∈ N, ai ∈ Z, Di prime divisors on X
}
.

An element
m

∑
i=1

aiDi of Div(X) is effective if ai ≥ 0 for any 1 ≤ i ≤ m.

If f is a non zero rational function, and D a prime divisor of X , one can define the multiplicity
ν f (D) of f at D as follows

• ν f (D) = k > 0 if f vanishes on D at the order k;

• ν f (D) =−k if f has poles of order k on D;

• ν f (D) = 0 otherwise.

To any rational function f ∈ C(X)∗ one associates a divisor div f ∈ Div(X) defined by

div f = ∑
D prime
divisor

ν f (D)D.

Such a divisor is called a principal divisor. Note that a principal divisor belongs to Div(X) as
ν f (D) = 0 for all but finitely many D. Since div f +divg = div f g the set of principal divisors is a
subgroup of Div(X).

Two divisors D, D′ on an algebraic variety are linearly equivalent if D−D′ is a principal
divisor. The set of equivalence classes corresponds to the quotient of Div(X) by the subgroup of
principal divisors. When X is smooth, this quotient is isomorphic to the group of isomorphism
classes of line bundles on X called the Picard group of X and denoted Pic(X).

VIII ESCUELA DOCTORAL INTERCONTINENTAL DE MATEMÁTICAS PUCP - UVA 137
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Exercice 1. — Determine Pic(Pn
C).

Exercice 2. — Determine Pic(P1
C×P1

C).

There is a notion of intersection:

Proposition 1.3 ([26]). — Let S be a smooth projective surface. There exists a unique bilinear
symmetric form

Div(S)×Div(S)→ Z, (D,D′) �→ D ·D′

having the following properties:

• if C and D are smooth curves meeting transversely, then C ·D = #(C∩D);

• if C and C′ are linearly equivalent, then C ·D =C′ ·D.

In particular this yields an intersection form

Pic(S)×Pic(S)→ Z, (D,D′) �→ D ·D′.

Definition 1.4. — Let p be a point of a smooth surface S. We say that π : Y → S is a blow-up of
p ∈ S if

• Y is a smooth variety,

• π|Y�{π−1(p)} : Y �{π−1(p)}→ S�{p} is an isomorphism,

• π−1(p)� P1
C.

The set π−1(p) is called the exceptional divisor.

Let us explain how to construct π. Assume for simplicity that X = S is a surface. Take a
neighborhood U of p on which there exist local coordinates x, y at p, that is the curves x = 0 and
y = 0 intersects transversely at p. Up to shrinking U one has

(x = 0)∩ (y = 0)∩U = {p}.

Let us consider the subvariety Ũ ⊂U×P1
C defined by xv−yu= 0 where u and v are homogeneous

coordinates on P1
C. The projection π : Ũ → U is an isomorphism over the points of U where at

most one of the coordinates x, y vanishes

π
(
(0,y),(0 : 1)

)
= (0,y) π

(
(x,0),(1 : 0)

)
= (x,0)

and π−1(p) = {p}×P1
C. It follows from the construction that the points of E can be naturally

identified with the tangent directions on S at p.

138 VIII ESCUELA DOCTORAL INTERCONTINENTAL DE MATEMÁTICAS PUCP - UVA

ABOUT THE CREMONA GROUP

Remarks 1.5. • If π : Y → S and π′ : Y ′ → S are two blow-ups of p, then there exists an
isomorphism ϕ : Y → Y ′ such that π = π′ϕ; we can thus speak about the blow-up of p ∈ S.

• Note that π is not an isomorphism: it contracts E = π−1(p)� P1
C onto p.

Let π : Blp S → S be the blow-up of p ∈ S. The morphism π induces the map

π∗ : Pic(S)→ Pic(Blp S), C �→ π−1C.

If S is a smooth algebraic surface and if C ⊂ S is an irreducible curve, the strict transform of
C is C̃ = π−1(C�{p}).

Let us recall that if Y is a quasi-projective variety, and if y is a point of Y , then Oy,Y is the set
of equivalence classes of pairs (U, f ) where

• U ⊂ Y is an open subset,

• y ∈ U,

• f ∈ C[U].

Definition 1.6. — If S is a smooth algebraic surface, C ⊂ S a curve on S, and p a point of S, we
can define the multiplicity mp(C) of C at p.

Let m be the maximal ideal of the ring of functions Op,S. Let f be a local equation of C; then
mp(C) can be defined as the integer k such that f ∈ mk �mk+1. For instance if S is rational, one
can find a neighborhood U of p in S with




U ⊂ C2

p = (0,0)

C is described by
m

∑
i=1

Pi(x,y) = 0

where Pi denotes an homogeneous polynomial of degree i.

The multiplicity mp(C) is equal to the lowest i such that Pi �≡ 0. The following properties holds




mp(C)≥ 0
mp(C) = 0 ⇐⇒ p �∈C
mp(C) = 1 ⇐⇒ p is a smooth point of C

Take two distinct curves C and C′ without common component. One can define an integer
(C ·C′)p which counts the intersection of C and C′ at p:
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• it is equal to 0 if either C, or C′ does not pass through p,

• otherwise let f , resp. g be some local equation of C, resp. C′ in a neighborhood of p and
define (C ·C′)p to be dim Op,S

( f ,g) .

This number is related to C ·C′ as follows (see [26, Chapter V, Proposition 1.4]): if C and C′

are two distinct curves without common irreducible component on a smooth surface, then

C ·C′ = ∑
p∈C∩C′

(C ·C′)p.

In particular C ·C′ ≥ 0.

Lemma 1.7. — Let π : BlpS → S be the blow-up of p ∈ S. Then

π∗C = C̃+mp(C)E

where C̃ is the strict transform of C, and E = π−1(p).

Proof. Let us fix some local coordinates (x,y) such that



p = (0,0)
k = mp(C)

C is given by
Pk(x,y)+Pk+1(x,y)+ . . .+Pk+�(x,y) = 0

where Pi denotes a homogeneous polynomial of degree i

The blow-up of p can be viewed as (u,v) �→ (uv,v); hence the pull-back of C is given by

vk(Pk(u,1)+ vPk+1(u,1)+ . . .+ v� Pk+�(u,1)
)
= 0

i.e. it decomposes into k times the exceptional divisor π−1(0,0) = (v = 0) and the strict transform
of C.

Let S be a compact, complex surface, and let ωS be the line bundle of differential 2-forms on
S. The canonical divisor KS of S is such that OS(KS) = ωS.

Example 1.8. The canonical divisor of P2
C is

KP2
C
= [−3H]

where H denotes a generic hyperplane of P2
C.

140 VIII ESCUELA DOCTORAL INTERCONTINENTAL DE MATEMÁTICAS PUCP - UVA
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Proposition 1.9 ([26]). — Let S be a smooth surface, p be a point of S, and π : BlpS → S be the
blow-up of p. Set E = π−1(p)� P1

C. One has

Pic(BlpS) = π∗Pic(S)+Z ·E.

The intersection form on BlpS is induced by the intersection form on S via



π∗C ·π∗C′ =C ·C′ ∀C,C′ ∈ Pic(S)
π∗C ·E = 0 ∀C ∈ Pic(S)
E2 = E ·E =−1
C̃2 =C2 −1 ∀C � p,C smooth

Furthermore, KBlpS = π∗KS +E.

The proof is decomposed in the following exercises:

Exercice 3. Prove the following equalities



π∗C ·π∗C′ =C ·C′ ∀C,C′ ∈ Pic(S)
π∗C ·E = 0 ∀C ∈ Pic(S)
E2 = E ·E =−1
C̃2 =C2 −1 ∀C � p,C smooth

Exercice 4. Prove that

Pic(BlpS) = π∗Pic(S)+Z ·E.

Exercice 5. Prove that KBlpS = π∗KS +E.

1.2 Rational and birational maps

1.2.1 First Definitions

Consider two irreducible varieties X and Y . A rational map φ : X ��� Y is a morphism from an
open subset U of X to Y which cannot be extended to any larger open subset; φ is defined at x if
x belongs to U. The set X �U is the indeterminacy set of φ; it is denoted Indφ.

Suppose that X = S is a smooth surface, then Indφ is the union of a finite number of points.
One has

• if C is an irreducible curve on S, then φ is defined on C�Indφ; the image of C is φ(C� Indφ)
and is still denoted φ(C).
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• it is equal to 0 if either C, or C′ does not pass through p,

• otherwise let f , resp. g be some local equation of C, resp. C′ in a neighborhood of p and
define (C ·C′)p to be dim Op,S

( f ,g) .

This number is related to C ·C′ as follows (see [26, Chapter V, Proposition 1.4]): if C and C′

are two distinct curves without common irreducible component on a smooth surface, then

C ·C′ = ∑
p∈C∩C′

(C ·C′)p.

In particular C ·C′ ≥ 0.

Lemma 1.7. — Let π : BlpS → S be the blow-up of p ∈ S. Then

π∗C = C̃+mp(C)E

where C̃ is the strict transform of C, and E = π−1(p).

Proof. Let us fix some local coordinates (x,y) such that



p = (0,0)
k = mp(C)

C is given by
Pk(x,y)+Pk+1(x,y)+ . . .+Pk+�(x,y) = 0

where Pi denotes a homogeneous polynomial of degree i

The blow-up of p can be viewed as (u,v) �→ (uv,v); hence the pull-back of C is given by

vk(Pk(u,1)+ vPk+1(u,1)+ . . .+ v� Pk+�(u,1)
)
= 0

i.e. it decomposes into k times the exceptional divisor π−1(0,0) = (v = 0) and the strict transform
of C.

Let S be a compact, complex surface, and let ωS be the line bundle of differential 2-forms on
S. The canonical divisor KS of S is such that OS(KS) = ωS.

Example 1.8. The canonical divisor of P2
C is

KP2
C
= [−3H]

where H denotes a generic hyperplane of P2
C.
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Proposition 1.9 ([26]). — Let S be a smooth surface, p be a point of S, and π : BlpS → S be the
blow-up of p. Set E = π−1(p)� P1

C. One has

Pic(BlpS) = π∗Pic(S)+Z ·E.

The intersection form on BlpS is induced by the intersection form on S via



π∗C ·π∗C′ =C ·C′ ∀C,C′ ∈ Pic(S)
π∗C ·E = 0 ∀C ∈ Pic(S)
E2 = E ·E =−1
C̃2 =C2 −1 ∀C � p,C smooth

Furthermore, KBlpS = π∗KS +E.

The proof is decomposed in the following exercises:

Exercice 3. Prove the following equalities



π∗C ·π∗C′ =C ·C′ ∀C,C′ ∈ Pic(S)
π∗C ·E = 0 ∀C ∈ Pic(S)
E2 = E ·E =−1
C̃2 =C2 −1 ∀C � p,C smooth

Exercice 4. Prove that

Pic(BlpS) = π∗Pic(S)+Z ·E.

Exercice 5. Prove that KBlpS = π∗KS +E.

1.2 Rational and birational maps

1.2.1 First Definitions

Consider two irreducible varieties X and Y . A rational map φ : X ��� Y is a morphism from an
open subset U of X to Y which cannot be extended to any larger open subset; φ is defined at x if
x belongs to U. The set X �U is the indeterminacy set of φ; it is denoted Indφ.

Suppose that X = S is a smooth surface, then Indφ is the union of a finite number of points.
One has

• if C is an irreducible curve on S, then φ is defined on C�Indφ; the image of C is φ(C� Indφ)
and is still denoted φ(C).
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• restriction induces an isomorphism between the divisors groups of S� Indφ and S, which
induces an isomorphism between Pic(S) and Pic(S�Indφ). We can thus speak of the inverse
image φ∗D under φ of a divisor D on Y .

Example 1.10. — Let S ⊂ Pn
C be a surface, and p be a point of S. The set of lines through p can

be identified with a projective space Pn−1
C . To any point q of S� {p} we associate the line through

p and q; this yields a rational map S ��� Pn−1
C (the projection away from p). It is defined outside

p and extends to a morphism BlpS → Pn−1
C .

A birational map φ : X ���Y is a rational map such that there exists a rational map ψ : Y ���X
such that φψ = ψφ = id.

1.2.2 Linear systems

Consider a divisor D on a surface S; we denote by |D| the set of all effective divisors on S linearly
equivalent to D. Every non-vanishing section of Os(D)1 defines an element of |D|, namely its
divisor of zeros. Conversely any element of |D| is the divisor of zeros of a non-vanishing section
of OS(D), defined up to scalar multiplication. Therefore |D| can be naturally identified with the
projective space associated to the vector space2 H0(OS(D)). A linear subspace S of |D| is called
a linear system on S; equivalently S can be defined by a vector subspace of H0(OS(D)).

The dimension of S is by definition its dimension as a projective space. A 1-dimensional
linear system is a pencil.

A curve C is a fixed component of S if any divisor of S contains C.
The fixed part of S is the biggest divisor F that is contained in every element of S .
A point p of S is a base point or fixed point of S if every divisor of S contains p. If the

linear system S has no fixed part, then it has only a finite number, say b, of fixed points; clearly
b < D2, for D ∈ S .

Let S be a surface. Then there is a bijection between the set

{
rational maps φ : S ��� Pn

C such that φ(S) is contained in no hyperplane
}

and the set {
linear systems on S without fixed part and of dimension n

}
.

Indeed, to the map φ we associate the linear system φ∗|H|, where |H| is the system of hyper-
planes in Pn

C. Conversely, let S be a linear system on S with no fixed part and denote by S ∨

1Recall that OS(D) denotes the invertible sheaf corresponding to D.
2Recall that Hi(OS(D)) is the i-th cohomology group of OS(D).
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the projective space dual to S . Now define a rational map φ : S ��� S ∨ by sending x ∈ S to the
hyperplane in S consisting of the divisors passing through x; the map φ is defined at x if and only
if x is not a base point of S .

1.2.3 Cremona maps

If S = P2
C, then a birational self-map φ of S can be written

(z0 : z1 : z2) ���
(
φ0(z0,z1,z2) : φ1(z0,z1,z2) : φ2(z0,z1,z2)

)

where the φi’s denote homogeneous polynomials of the same degree without common factor (of
positive degree). The set of all birational maps of P2

C is called the Cremona group, and is denoted
Bir(P2

C). The indeterminacy set Indφ of φ is the finite set given by

{
p ∈ P2

C |φ0(p) = φ1(p) = φ2(p) = 0
}
.

The exceptional set Excφ of φ is the set of curves blown down by φ; one has

Excφ =
{

det jacφ = 0
}
.

The degree of φ is defined by: degφ = degφi. Let d be a positive integer. The set Bird(P2
C) of

plane birational maps of degree d is quasi-projective: it is a Zariski open subset in the subvariety
of the projective space made of triples of homogeneous polynomials of degree d modulo scalar
multiplication. The group Aut(P2

C) acts on Bird(P2
C) as follows

Aut(P2
C)×Bird(P2

C)×Aut(P2
C)→ Bird(P2

C), (A,φ,B) �→ AφB−1.

If φ is an element of Bird(P2
C), then O(φ) denotes the orbit of φ under this action.

The linear system S defined by any element φ = (φ0 : φ1 : φ2) of Bir(P2
C) is given by

{
λ0φ0 +λ1φ1 +λ2φ2 = 0 |(λ0 : λ1 : λ2) ∈ P2

C
}
.

It is the reciprocical image by φ of the net of lines

{
λ0z0 +λ1z1 +λ2z2 = 0 |(λ0 : λ1 : λ2) ∈ P2

C
}
.

In particular any curve of S is a rational one. Take a base point p of φ; the multiplicity of φ at p
is the multiplicity of a generic curve of S at p, that is the order of a generic element of S at p.
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• restriction induces an isomorphism between the divisors groups of S� Indφ and S, which
induces an isomorphism between Pic(S) and Pic(S�Indφ). We can thus speak of the inverse
image φ∗D under φ of a divisor D on Y .

Example 1.10. — Let S ⊂ Pn
C be a surface, and p be a point of S. The set of lines through p can

be identified with a projective space Pn−1
C . To any point q of S� {p} we associate the line through

p and q; this yields a rational map S ��� Pn−1
C (the projection away from p). It is defined outside

p and extends to a morphism BlpS → Pn−1
C .

A birational map φ : X ���Y is a rational map such that there exists a rational map ψ : Y ���X
such that φψ = ψφ = id.

1.2.2 Linear systems

Consider a divisor D on a surface S; we denote by |D| the set of all effective divisors on S linearly
equivalent to D. Every non-vanishing section of Os(D)1 defines an element of |D|, namely its
divisor of zeros. Conversely any element of |D| is the divisor of zeros of a non-vanishing section
of OS(D), defined up to scalar multiplication. Therefore |D| can be naturally identified with the
projective space associated to the vector space2 H0(OS(D)). A linear subspace S of |D| is called
a linear system on S; equivalently S can be defined by a vector subspace of H0(OS(D)).

The dimension of S is by definition its dimension as a projective space. A 1-dimensional
linear system is a pencil.

A curve C is a fixed component of S if any divisor of S contains C.
The fixed part of S is the biggest divisor F that is contained in every element of S .
A point p of S is a base point or fixed point of S if every divisor of S contains p. If the

linear system S has no fixed part, then it has only a finite number, say b, of fixed points; clearly
b < D2, for D ∈ S .

Let S be a surface. Then there is a bijection between the set

{
rational maps φ : S ��� Pn

C such that φ(S) is contained in no hyperplane
}

and the set {
linear systems on S without fixed part and of dimension n

}
.

Indeed, to the map φ we associate the linear system φ∗|H|, where |H| is the system of hyper-
planes in Pn

C. Conversely, let S be a linear system on S with no fixed part and denote by S ∨

1Recall that OS(D) denotes the invertible sheaf corresponding to D.
2Recall that Hi(OS(D)) is the i-th cohomology group of OS(D).
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the projective space dual to S . Now define a rational map φ : S ��� S ∨ by sending x ∈ S to the
hyperplane in S consisting of the divisors passing through x; the map φ is defined at x if and only
if x is not a base point of S .

1.2.3 Cremona maps

If S = P2
C, then a birational self-map φ of S can be written

(z0 : z1 : z2) ���
(
φ0(z0,z1,z2) : φ1(z0,z1,z2) : φ2(z0,z1,z2)

)

where the φi’s denote homogeneous polynomials of the same degree without common factor (of
positive degree). The set of all birational maps of P2

C is called the Cremona group, and is denoted
Bir(P2

C). The indeterminacy set Indφ of φ is the finite set given by

{
p ∈ P2

C |φ0(p) = φ1(p) = φ2(p) = 0
}
.

The exceptional set Excφ of φ is the set of curves blown down by φ; one has

Excφ =
{

det jacφ = 0
}
.

The degree of φ is defined by: degφ = degφi. Let d be a positive integer. The set Bird(P2
C) of

plane birational maps of degree d is quasi-projective: it is a Zariski open subset in the subvariety
of the projective space made of triples of homogeneous polynomials of degree d modulo scalar
multiplication. The group Aut(P2

C) acts on Bird(P2
C) as follows

Aut(P2
C)×Bird(P2

C)×Aut(P2
C)→ Bird(P2

C), (A,φ,B) �→ AφB−1.

If φ is an element of Bird(P2
C), then O(φ) denotes the orbit of φ under this action.

The linear system S defined by any element φ = (φ0 : φ1 : φ2) of Bir(P2
C) is given by

{
λ0φ0 +λ1φ1 +λ2φ2 = 0 |(λ0 : λ1 : λ2) ∈ P2

C
}
.

It is the reciprocical image by φ of the net of lines

{
λ0z0 +λ1z1 +λ2z2 = 0 |(λ0 : λ1 : λ2) ∈ P2

C
}
.

In particular any curve of S is a rational one. Take a base point p of φ; the multiplicity of φ at p
is the multiplicity of a generic curve of S at p, that is the order of a generic element of S at p.
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The degree is not a birational invariant: there exist φ and ψ in Bir(P2
C) such that deg(ψφψ−1) �=

degφ. Nevertheless the dynamical degree

λ(φ) = lim
n→+∞

(degφn)1/n

of a birational map φ is. More generally consider a projective surface S, a birational self-map φ of
S, and || · || any norm of the Néron-Severi real vector space NS(S); we can define

λ(φ) = lim
n→+∞

||(φn)∗||1/n

where φ∗ is the induced action on NS(S).
Note that 1 ≤ λ(φ) ≤ d. When φ is an automorphism with λ(φ) > 1, then λ(φ) is algebraic

but never rational; in particular λ(φ) < d. Let ω denote any Kähler form (for instance the Fubini
Study form) with

∫
S ω2 = 1. For any generic line L one has

λ(φ) = lim
k
||(φk)∗||1/k

= lim
k

(∫
S

β∧ (φk)∗β
)1/k

= lim
k

(∫
φ−kL

β
)1/k

= lim
k

(
vol(φ−kL)

)1/k

so the dynamical degree also measures the exponential rate of growth of (k − 1)-dimensional
volume under pullback. It would be convenient if we could have (φ∗)k = (φk)∗. Diller and Favre
showed there is a finite sequence of blow-ups π : S′ → S such that the induced map φS′ = π−1φπ
satisfies (φk

S′)
∗ = (φ∗

S′)
k (see [18]). Set ωS′ = π∗ω; then

λ(φ) = lim
k

(∫

S
ω∧ (φk)∗ω

)1/k

= lim
k

(∫

S′
ωS′ ∧ (φk

S′)
∗ωS′

)1/k

= lim
k

(∫

S′
ωS′ ∧ (φ∗

S′)
kωS′

)1/k

The form ωS′ is a Kähler form so as soon as λ(φ) > 1 the growth of ωS′ under (φ∗
S′)

k gives the
growth of |(φk

S′)
∗| and λ(φ) coincides with the spectral radius of φ∗

S′ , i.e. the modulus of the largest
eigenvalue.

Definition 1.11. — Let φ be an element of Bir(P2
C).

If (degφn)n is bounded, we say that φ is elliptic.
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If (degφn)n grows linearly, then φ is a Jonquières twist.

If (degφn)n grows quadratically, then φ is a Halphen twist.

If (degφn)n grows exponentially, then φ is hyperbolic.

Examples 1.12. • Birational self-maps of P2
C of degree 1 are maps of the type

(
a0z0 +a1z1 +a2z2 : a3z0 +a4z1 +a5z2 : a6z0 +a7z1 +a8z2

)

with det(ai) �= 0; they form the group Aut(P2
C). They are elliptic maps.

• The set Bir2(P2
C) is an irreducible algebraic variety of dimension 14. Set




σ = (z1z2 : z0z2 : z0z1)

ρ = (z0z2 : z0z1 : z2
2)

τ = (z0z2 + z2
1 : z1z2 : z2

2)

One has ([11]) 


Bir2(P2
C) = O(σ)∪O(φ)∪O(τ)

Bir2(P2
C) = O(σ)

dimO(σ) = 14, dimO(ρ) = 13, dimO(τ) = 12

• Denote by Jd the set of birational maps of degree d of P2
C that preserve the pencil of lines

through p0 = (1 : 0 : 0). These maps are called Jonquières maps of degree d. The Jon-
quières group is the group J = ∪dJd . In affine coordinates an element φ of Jd has the
following form

φ(z0,z1) =

(
a(z1)z0 +b(z1)

c(z1)z0 +d(z1)
,
αz1 +β
γz1 +δ

)

with [
α β
γ δ

]
∈ PGL(2,C)

[
a(z1) b(z1)

c(z1) d(z1)

]
∈ PGL(2,C(z1)).

Cleaning denominators we may assume that a, b, c and d are polynomials of respective
degree d −1, d, d −2, and d −1. The base points of φ are

{
the point p0 = (1 : 0 : 0) with multiplicity d −1
2d −2 single points p1, p2, . . ., p2d−2

The same holds for φ−1.

Remarks that the set of Jonquières twist is contained in J but the inclusion is strict (for
instance σ is elliptic and belongs to J ).
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The degree is not a birational invariant: there exist φ and ψ in Bir(P2
C) such that deg(ψφψ−1) �=

degφ. Nevertheless the dynamical degree

λ(φ) = lim
n→+∞

(degφn)1/n

of a birational map φ is. More generally consider a projective surface S, a birational self-map φ of
S, and || · || any norm of the Néron-Severi real vector space NS(S); we can define

λ(φ) = lim
n→+∞

||(φn)∗||1/n

where φ∗ is the induced action on NS(S).
Note that 1 ≤ λ(φ) ≤ d. When φ is an automorphism with λ(φ) > 1, then λ(φ) is algebraic

but never rational; in particular λ(φ) < d. Let ω denote any Kähler form (for instance the Fubini
Study form) with

∫
S ω2 = 1. For any generic line L one has

λ(φ) = lim
k
||(φk)∗||1/k

= lim
k

(∫
S

β∧ (φk)∗β
)1/k

= lim
k

(∫
φ−kL

β
)1/k

= lim
k

(
vol(φ−kL)

)1/k

so the dynamical degree also measures the exponential rate of growth of (k − 1)-dimensional
volume under pullback. It would be convenient if we could have (φ∗)k = (φk)∗. Diller and Favre
showed there is a finite sequence of blow-ups π : S′ → S such that the induced map φS′ = π−1φπ
satisfies (φk

S′)
∗ = (φ∗

S′)
k (see [18]). Set ωS′ = π∗ω; then

λ(φ) = lim
k

(∫

S
ω∧ (φk)∗ω

)1/k

= lim
k

(∫

S′
ωS′ ∧ (φk

S′)
∗ωS′

)1/k

= lim
k

(∫

S′
ωS′ ∧ (φ∗

S′)
kωS′

)1/k

The form ωS′ is a Kähler form so as soon as λ(φ) > 1 the growth of ωS′ under (φ∗
S′)

k gives the
growth of |(φk

S′)
∗| and λ(φ) coincides with the spectral radius of φ∗

S′ , i.e. the modulus of the largest
eigenvalue.

Definition 1.11. — Let φ be an element of Bir(P2
C).

If (degφn)n is bounded, we say that φ is elliptic.
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If (degφn)n grows linearly, then φ is a Jonquières twist.

If (degφn)n grows quadratically, then φ is a Halphen twist.

If (degφn)n grows exponentially, then φ is hyperbolic.

Examples 1.12. • Birational self-maps of P2
C of degree 1 are maps of the type

(
a0z0 +a1z1 +a2z2 : a3z0 +a4z1 +a5z2 : a6z0 +a7z1 +a8z2

)

with det(ai) �= 0; they form the group Aut(P2
C). They are elliptic maps.

• The set Bir2(P2
C) is an irreducible algebraic variety of dimension 14. Set




σ = (z1z2 : z0z2 : z0z1)

ρ = (z0z2 : z0z1 : z2
2)

τ = (z0z2 + z2
1 : z1z2 : z2

2)

One has ([11]) 


Bir2(P2
C) = O(σ)∪O(φ)∪O(τ)

Bir2(P2
C) = O(σ)

dimO(σ) = 14, dimO(ρ) = 13, dimO(τ) = 12

• Denote by Jd the set of birational maps of degree d of P2
C that preserve the pencil of lines

through p0 = (1 : 0 : 0). These maps are called Jonquières maps of degree d. The Jon-
quières group is the group J = ∪dJd . In affine coordinates an element φ of Jd has the
following form

φ(z0,z1) =

(
a(z1)z0 +b(z1)

c(z1)z0 +d(z1)
,
αz1 +β
γz1 +δ

)

with [
α β
γ δ

]
∈ PGL(2,C)

[
a(z1) b(z1)

c(z1) d(z1)

]
∈ PGL(2,C(z1)).

Cleaning denominators we may assume that a, b, c and d are polynomials of respective
degree d −1, d, d −2, and d −1. The base points of φ are

{
the point p0 = (1 : 0 : 0) with multiplicity d −1
2d −2 single points p1, p2, . . ., p2d−2

The same holds for φ−1.

Remarks that the set of Jonquières twist is contained in J but the inclusion is strict (for
instance σ is elliptic and belongs to J ).
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• A polynomial automorphism φ of C2 is a bijective map of the form

φ : C2 → C2, (z0,z1) �→
(
φ0(z0,z1),φ1(z0,z1)

)
, φi ∈ C[z0,z1].

The set of polynomial automorphisms of C2 form a group denoted Aut(C2). According to
Friedland and Milnor if φ belongs to Aut(C2), then up to conjugacy ([20])

(i) either φ = (αx+P(y),βy+ γ) with α, β, γ ∈ C, αβ �= 0, P ∈ C[y],

(ii) or
φ = h1h2 . . .hk

with hi = (y,Pi(y)−δix), δi ∈ C∗, Pi ∈ C[y], degPi ≥ 2.

In case (i), then φ is elliptic; in case (ii) φ is hyperbolic.

Exercice 6. — Give a description of the indeterminacy set, and the exceptional set of an automor-
phism of P2

C.

Exercice 7. — Give a description of the indeterminacy set, and the exceptional set of σ, resp. ρ,
resp. τ.

Exercice 8. — Give a description of the linear systems associated to σ, ρ and τ.

There is a "classification" of the birational maps of P2
C:

Theorem 1.13 ([18, 25, 4]). — Let φ be an element of the Cremona group. Then exactly one of
the following holds

• φ is elliptic, furthermore either φ is of finite order, or φ is conjugate to an automorphism of
P2
C;

• φ is a Jonquières twist, φ preserves a unique fibration that is rational and φ is non conjugate
to an automorphism;

• φ is a Halphen twist, φ preserves a unique fibration that is elliptic, and φ is conjugate to an
automorphism;

• φ is a hyperbolic map.

In the first three cases λ(φ) = 1, in the last one λ(φ)> 1.

Exercice 9. Give an example of an elliptic map, a Jonquières twist, a Halphen twist, and a hyper-
bolic map.
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1.3 Zariski theorem

Let us recall the following statement.

Theorem 1.14 (Zariski). Let S, S̃ be two smooth projective surfaces and φ : S ��� S̃ be a birational
map. There exists a smooth projective surface S′ and two sequences of blow-ups π1 : S′ → S,
π2 : S′ → S̃ such that φ = π2π−1

1

S′

π1

��

π2

��

S
φ

�� S̃

Example 1.15. The involution

σ : P2
C ��� P2

C, (z0 : z1 : z2) ��� (z1z2 : z0z2 : z0z1)

is the composition of two sequences of blow-ups

LPR LPQ

LQR

L̃PQ

EP

L̃PR

ER

L̃QR

EQ

ẼP

ẼQ ẼR

π1 π2

σ

Q

P

R

with

P = (1 : 0 : 0), Q = (0 : 1 : 0), R = (0 : 0 : 1),
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• A polynomial automorphism φ of C2 is a bijective map of the form

φ : C2 → C2, (z0,z1) �→
(
φ0(z0,z1),φ1(z0,z1)

)
, φi ∈ C[z0,z1].

The set of polynomial automorphisms of C2 form a group denoted Aut(C2). According to
Friedland and Milnor if φ belongs to Aut(C2), then up to conjugacy ([20])

(i) either φ = (αx+P(y),βy+ γ) with α, β, γ ∈ C, αβ �= 0, P ∈ C[y],

(ii) or
φ = h1h2 . . .hk

with hi = (y,Pi(y)−δix), δi ∈ C∗, Pi ∈ C[y], degPi ≥ 2.

In case (i), then φ is elliptic; in case (ii) φ is hyperbolic.

Exercice 6. — Give a description of the indeterminacy set, and the exceptional set of an automor-
phism of P2

C.

Exercice 7. — Give a description of the indeterminacy set, and the exceptional set of σ, resp. ρ,
resp. τ.

Exercice 8. — Give a description of the linear systems associated to σ, ρ and τ.

There is a "classification" of the birational maps of P2
C:

Theorem 1.13 ([18, 25, 4]). — Let φ be an element of the Cremona group. Then exactly one of
the following holds

• φ is elliptic, furthermore either φ is of finite order, or φ is conjugate to an automorphism of
P2
C;

• φ is a Jonquières twist, φ preserves a unique fibration that is rational and φ is non conjugate
to an automorphism;

• φ is a Halphen twist, φ preserves a unique fibration that is elliptic, and φ is conjugate to an
automorphism;

• φ is a hyperbolic map.

In the first three cases λ(φ) = 1, in the last one λ(φ)> 1.

Exercice 9. Give an example of an elliptic map, a Jonquières twist, a Halphen twist, and a hyper-
bolic map.
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1.3 Zariski theorem

Let us recall the following statement.

Theorem 1.14 (Zariski). Let S, S̃ be two smooth projective surfaces and φ : S ��� S̃ be a birational
map. There exists a smooth projective surface S′ and two sequences of blow-ups π1 : S′ → S,
π2 : S′ → S̃ such that φ = π2π−1

1

S′

π1

��

π2

��

S
φ

�� S̃

Example 1.15. The involution

σ : P2
C ��� P2

C, (z0 : z1 : z2) ��� (z1z2 : z0z2 : z0z1)

is the composition of two sequences of blow-ups

LPR LPQ

LQR

L̃PQ

EP

L̃PR

ER

L̃QR

EQ

ẼP

ẼQ ẼR

π1 π2

σ

Q

P

R

with

P = (1 : 0 : 0), Q = (0 : 1 : 0), R = (0 : 0 : 1),

VIII ESCUELA DOCTORAL INTERCONTINENTAL DE MATEMÁTICAS PUCP - UVA 147

157

About the Cremona group / Julie Déserti



J. DÉSERTI

LPQ (resp. LPR, resp. LQR) the line passing through P and Q (resp. P and R, resp. Q and R) EP

(resp. EQ, resp. ER) the exceptional divisor obtained by blowing up P (resp. Q, resp. R) and L̃PQ

(resp. L̃PR, resp. L̃QR) the strict transform of LPQ (resp. LPR, resp. LQR).

We will prove Theorem 1.14 in the following exercises. There are two steps:

• the first one is to compose φ with a sequence of blow-ups in order to remove all the points
of indeterminacy, we thus have

S′

π

��

φ̃

��

S
φ

�� S̃

where π1 is a finite sequence of blow-ups and φ̃ a birational morphism;

• the second step can be stated as follows: let φ : S → S′ be a birational morphism between two
surfaces S and S′. Assume that φ−1 is not defined at a point p of S′; then φ can be written πψ
where π : BlpS′ → S′ is the blow-up of p ∈ S′ and ψ a birational morphism from S to BlpS′.

Remark 1.16. The first step is also possible with a rational map, and can be adapted in higher
dimension whereas the second one isn’t.

Exercice 10. Let φ : S ��� X be a rational map from a surface to a projective variety. Then there
exists a surface S′, a morphism η : S′ → S which is the composition of a finite number of blow-ups,
and a morphism f : S′ → X such that

S′
η

��

f

��

S
φ

�� X

commutes.

The second step is decomposed in the two following exercises.

Exercice 11. Let φ : S ��� S′ be a birational map between two surfaces S and S′. If there exists a
point p ∈ S such that φ is not defined at p there exists a curve C on S′ such that φ−1(C ) = p.
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Exercice 12. Let φ : S → S′ be a birational morphism between two surfaces S and S′. Assume that
φ−1 is not defined at a point p of S′; then φ can be written πψ where π : BlpS′ → S′ is the blow-up
of p ∈ S′ and ψ a birational morphism from S to BlpS′

BlpS′

π

��

S

ψ
��

φ
�� S′

1.4 Exceptional configurations and characteristic matrices

Let φ ∈ Bir(P2
C) be a birational map of degree ν. By Theorem 1.14 there exist a smooth projective

surface S′ and π, η two sequences of blow-ups such that

S
π

��

η

��

P2
C φ

�� P2
C

We can rewrite π as follows

π : S = Sk
πk→ Sk−1

πk−1→ . . .
π2→ S1

π1→ S0 = P2
C

where πi is the blow-up of the point pi−1 in Si−1. Let us set

Ei = π−1
i (pi), Ei = (πi+1 ◦ . . .◦πk)

∗Ei.

The divisors Ei are called the exceptional configurations of π and the pi base-points of φ.

An ordered resolution of φ is a decomposition φ=ηπ−1 where η and π are ordered sequences
of blow-ups. An ordered resolution of φ induces two basis of Pic(S)

• B =
{

e0 = π∗H, e1 = [E1], . . . , ek = [Ek]
}
,

• B ′ =
{

e′0 = η∗H, e′1 = [E ′
1], . . . , e′k = [E ′

k]
}
,

where H is a generic line. We can write e′i as follows

e′0 = νe0 −
k

∑
i=1

miei, e′j = ν je0 −
k

∑
i=1

mi jei, j ≥ 1.
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LPQ (resp. LPR, resp. LQR) the line passing through P and Q (resp. P and R, resp. Q and R) EP

(resp. EQ, resp. ER) the exceptional divisor obtained by blowing up P (resp. Q, resp. R) and L̃PQ

(resp. L̃PR, resp. L̃QR) the strict transform of LPQ (resp. LPR, resp. LQR).

We will prove Theorem 1.14 in the following exercises. There are two steps:

• the first one is to compose φ with a sequence of blow-ups in order to remove all the points
of indeterminacy, we thus have

S′

π

��

φ̃

��

S
φ

�� S̃

where π1 is a finite sequence of blow-ups and φ̃ a birational morphism;

• the second step can be stated as follows: let φ : S → S′ be a birational morphism between two
surfaces S and S′. Assume that φ−1 is not defined at a point p of S′; then φ can be written πψ
where π : BlpS′ → S′ is the blow-up of p ∈ S′ and ψ a birational morphism from S to BlpS′.

Remark 1.16. The first step is also possible with a rational map, and can be adapted in higher
dimension whereas the second one isn’t.

Exercice 10. Let φ : S ��� X be a rational map from a surface to a projective variety. Then there
exists a surface S′, a morphism η : S′ → S which is the composition of a finite number of blow-ups,
and a morphism f : S′ → X such that

S′
η

��

f

��

S
φ

�� X

commutes.

The second step is decomposed in the two following exercises.

Exercice 11. Let φ : S ��� S′ be a birational map between two surfaces S and S′. If there exists a
point p ∈ S such that φ is not defined at p there exists a curve C on S′ such that φ−1(C ) = p.
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Exercice 12. Let φ : S → S′ be a birational morphism between two surfaces S and S′. Assume that
φ−1 is not defined at a point p of S′; then φ can be written πψ where π : BlpS′ → S′ is the blow-up
of p ∈ S′ and ψ a birational morphism from S to BlpS′

BlpS′

π

��

S

ψ
��

φ
�� S′

1.4 Exceptional configurations and characteristic matrices

Let φ ∈ Bir(P2
C) be a birational map of degree ν. By Theorem 1.14 there exist a smooth projective

surface S′ and π, η two sequences of blow-ups such that

S
π

��

η

��

P2
C φ

�� P2
C

We can rewrite π as follows

π : S = Sk
πk→ Sk−1

πk−1→ . . .
π2→ S1

π1→ S0 = P2
C

where πi is the blow-up of the point pi−1 in Si−1. Let us set

Ei = π−1
i (pi), Ei = (πi+1 ◦ . . .◦πk)

∗Ei.

The divisors Ei are called the exceptional configurations of π and the pi base-points of φ.

An ordered resolution of φ is a decomposition φ=ηπ−1 where η and π are ordered sequences
of blow-ups. An ordered resolution of φ induces two basis of Pic(S)

• B =
{

e0 = π∗H, e1 = [E1], . . . , ek = [Ek]
}
,

• B ′ =
{

e′0 = η∗H, e′1 = [E ′
1], . . . , e′k = [E ′

k]
}
,

where H is a generic line. We can write e′i as follows

e′0 = νe0 −
k

∑
i=1

miei, e′j = ν je0 −
k

∑
i=1

mi jei, j ≥ 1.
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The matrix of change of basis

M =




ν ν1 . . . νk

−m1 −m11 . . . −m1k
...

...
...

−mk −mk1 . . . −mkk




is called characteristic matrix of φ. The first column of M, which is the characteristic vector of
φ, is the vector (ν,−m1, . . . ,−mk). The other columns

(νi,−m1i, . . . ,−mki)

describe the "behavior of E ′
i ": if ν j > 0, then π(E ′

j) is a curve of degree ν j in P2
C through the

points p� of φ with multiplicity m� j.

Example 1.17. Consider the birational map

σ : P2
C ��� P2

C, (z0 : z1 : z2) ��� (z1z2 : z0z2 : z0z1).

The points of indeterminacy of σ are

P = (1 : 0 : 0), Q = (0 : 1 : 0), R = (0 : 0 : 1)

and the exceptional set is the union of the three following lines

∆ = {z0 = 0}, ∆′ = {z1 = 0}, ∆′′ = {z2 = 0}.

First we blow up P; let us denote E the exceptional divisor and D1 the strict transform of D.

Set

{
z1 = u1

z2 = u1v1

{
z1 = r1s1

z2 = s1

In the coordinates (u1,v1) (resp. (r1,s1)) the exceptional divisor E is given by {u1 = 0} (resp.
{s1 = 0}) and ∆′′

1 (resp. ∆′
1) by {v1 = 0} (resp. {r1 = 0}).

On the one hand

(u1,v1)→ (u1,u1v1)(z1,z2) → (u1v1 : v1 : 1) =
(

1
u1

,
1

u1v1

)

(z1,z2)

→
(

1
u1

,
1
v1

)

(u1,v1)
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and on the other hand

(r1,s1)→ (r1s1,s1)(z1,z2) → (r1s1 : 1 : r1) =

(
1

r1s1
,

1
s1

)

(z1,z2)

→
(

1
r1
,

1
s1

)

(r1,s1)

.

Hence E is sent on ∆1; as σ is an involution ∆1 is sent on E.

Now blow up Q1; this time let us denote F the exceptional divisor and D2 the strict transform
of D1 :

{
z0 = u2

z2 = u2v2

{
z0 = r2s2

z2 = s2

In the coordinates (u2,v2) (resp. (r2,s2)) one has F = {u2 = 0} and ∆′′
2 = {v2 = 0} (resp.

F = {s2 = 0} and ∆2 = {r2 = 0}).

We have

(u2,v2)→ (u2,u2v2)(z0,z2) → (v2 : u2v2 : 1) =
(

1
u2

,
1

u2v2

)

(z0,z2)

→
(

1
u2

,
1
v2

)

(u2,v2)

and

(r2,s2)→ (r2s2,s2)(z0,z2) → (1 : r2s2 : r2) =

(
1

r2s2
,

1
s2

)

(z0,z2)

→
(

1
r2
,

1
s2

)

(r2,s2)

.

Therefore F is sent on ∆′
2 and ∆′

2 on F.

Finally we blow up R2; let us denote G the exceptional divisor and set
{

z0 = u3

z1 = u3v3

{
z0 = r3s3

z2 = s3

Note that

(u3,v3)→ (u3,u3v3)(z0,z1) → (v3 : 1 : u3v3) =

(
1
u3

,
1

u3v3

)

(z0,z1)

→
(

1
u3

,
1
v3

)

(u3,v3)

and

(r3,s3)→ (r3s3,s3)(z0,z1) → (1 : r3 : r3s3) =

(
1

r3s3
,

1
s3

)

(z0,z1)

→
(

1
r3
,

1
s3

)

(r3,s3)

.

One has G = {u3 = 0} and ∆′
3 = {v3 = 0} (resp. G = {s3 = 0} and ∆3 = {r3 = 0}).

Thus G → ∆′
3 and ∆′

3 → G. There are no more point of indeterminacy, no more exceptional
curve; in other words σ is conjugate to an automorphism of BlP,Q1,R2P2

C.
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The matrix of change of basis

M =




ν ν1 . . . νk

−m1 −m11 . . . −m1k
...

...
...

−mk −mk1 . . . −mkk




is called characteristic matrix of φ. The first column of M, which is the characteristic vector of
φ, is the vector (ν,−m1, . . . ,−mk). The other columns

(νi,−m1i, . . . ,−mki)

describe the "behavior of E ′
i ": if ν j > 0, then π(E ′

j) is a curve of degree ν j in P2
C through the

points p� of φ with multiplicity m� j.

Example 1.17. Consider the birational map

σ : P2
C ��� P2

C, (z0 : z1 : z2) ��� (z1z2 : z0z2 : z0z1).

The points of indeterminacy of σ are

P = (1 : 0 : 0), Q = (0 : 1 : 0), R = (0 : 0 : 1)

and the exceptional set is the union of the three following lines

∆ = {z0 = 0}, ∆′ = {z1 = 0}, ∆′′ = {z2 = 0}.

First we blow up P; let us denote E the exceptional divisor and D1 the strict transform of D.

Set

{
z1 = u1

z2 = u1v1

{
z1 = r1s1

z2 = s1

In the coordinates (u1,v1) (resp. (r1,s1)) the exceptional divisor E is given by {u1 = 0} (resp.
{s1 = 0}) and ∆′′

1 (resp. ∆′
1) by {v1 = 0} (resp. {r1 = 0}).

On the one hand

(u1,v1)→ (u1,u1v1)(z1,z2) → (u1v1 : v1 : 1) =
(

1
u1

,
1

u1v1

)

(z1,z2)

→
(

1
u1

,
1
v1

)

(u1,v1)
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and on the other hand

(r1,s1)→ (r1s1,s1)(z1,z2) → (r1s1 : 1 : r1) =

(
1

r1s1
,

1
s1

)

(z1,z2)

→
(

1
r1
,

1
s1

)

(r1,s1)

.

Hence E is sent on ∆1; as σ is an involution ∆1 is sent on E.

Now blow up Q1; this time let us denote F the exceptional divisor and D2 the strict transform
of D1 :

{
z0 = u2

z2 = u2v2

{
z0 = r2s2

z2 = s2

In the coordinates (u2,v2) (resp. (r2,s2)) one has F = {u2 = 0} and ∆′′
2 = {v2 = 0} (resp.

F = {s2 = 0} and ∆2 = {r2 = 0}).

We have

(u2,v2)→ (u2,u2v2)(z0,z2) → (v2 : u2v2 : 1) =
(

1
u2

,
1

u2v2

)

(z0,z2)

→
(

1
u2

,
1
v2

)

(u2,v2)

and

(r2,s2)→ (r2s2,s2)(z0,z2) → (1 : r2s2 : r2) =

(
1

r2s2
,

1
s2

)

(z0,z2)

→
(

1
r2
,

1
s2

)

(r2,s2)

.

Therefore F is sent on ∆′
2 and ∆′

2 on F.

Finally we blow up R2; let us denote G the exceptional divisor and set
{

z0 = u3

z1 = u3v3

{
z0 = r3s3

z2 = s3

Note that

(u3,v3)→ (u3,u3v3)(z0,z1) → (v3 : 1 : u3v3) =

(
1
u3

,
1

u3v3

)

(z0,z1)

→
(

1
u3

,
1
v3

)

(u3,v3)

and

(r3,s3)→ (r3s3,s3)(z0,z1) → (1 : r3 : r3s3) =

(
1

r3s3
,

1
s3

)

(z0,z1)

→
(

1
r3
,

1
s3

)

(r3,s3)

.

One has G = {u3 = 0} and ∆′
3 = {v3 = 0} (resp. G = {s3 = 0} and ∆3 = {r3 = 0}).

Thus G → ∆′
3 and ∆′

3 → G. There are no more point of indeterminacy, no more exceptional
curve; in other words σ is conjugate to an automorphism of BlP,Q1,R2P2

C.

VIII ESCUELA DOCTORAL INTERCONTINENTAL DE MATEMÁTICAS PUCP - UVA 151

161

About the Cremona group / Julie Déserti



J. DÉSERTI

Let H be a generic line. Note that E1 = E, E2 = F, E3 = H. Consider the basis {H, E, F, G}.
After the first blow-up ∆ and E are swapped; the point blown up is the intersection of ∆′ and ∆′′ so
∆ → ∆+F+G. Then σ∗E = H−F−G. Similarly we have

{
σ∗F = H−E−G
σ∗G = H−E−F

It remains to determine σ∗H. The image of a generic line by σ is a conic hence σ∗H = 2H−m1E−
m2F−m3G. Let L be a generic line given by a0z0 +a1z1 +a2z2. A computation shows that

(u1,v1)→ (u1,u1v1)(z1,z2) → (u2
1v1 : u1v1 : u1)→ u1(a0v2 +a1u2v2 +a2)

vanishes to order 1 on E = {u1 = 0} thus m1 = 1. Note also that

(u2,v2)→ (u2,u2v2)(z0,z2) → (u2v2 : u2
2v2 : u2)→ u2(a0v2 +a1u2v2 +a2),

respectively

(u3,v3)→ (u3,u3v3)(z0,z1) → (u3v3 : u3 : u2
3v3)→ u3(a0v3 +a1 +a2u3v3)

vanishes to order 1 on F = {u2 = 0}, resp. G = {u3 = 0} so m2 = 1, resp. m3 = 1. Therefore
σ∗H = 2H−E−F−G and the characteristic matrix of σ in the basis

{
H, E, F, G

}
is

Mσ =




2 1 1 1
−1 0 −1 −1
−1 −1 0 −1
−1 −1 −1 0



.

Exercice 13. Let us consider the involution given by

ρ : P2
C ��� P2

C, (z0 : z1 : z2) ��� (z0z1 : z2
2 : z1z2).

We can show that Mρ = Mσ.

Exercice 14. Consider the birational map

τ : P2
C ��� P2

C, (z0 : z1 : z2) ��� (z2
0 : z0z1 : z2

1 − z0z2).

We can verify that Mτ = Mσ.
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Solution 1. — Let us determine Pic(Pn
C). Consider the homomorphism of groups given by

θ : Div(Pn
C)→ Z, D �→ degD.

Let D be in kerθ; write D as ∑
i

aiDi where Di denotes a prime divisor given by a homogeneous

polynomial fi ∈ C[z0,z1, . . . ,zn] of some degree di. Since ∑
i

aidi = 0 one has: f = ∏
i

f ai
i belongs

to C(Pn
C)

∗, and by construction D = div f so D is a prime divisor.
Conversely any prime divisor is equal to div g

h where g, h are polynomials of the same degree;
any principal divisor thus belongs to kerθ.

In other words kerθ is the subgroup of principal divisors. So Div(Pn
C)

/
kerθ � Z.

Solution 2. — Let us determine Pic(P1
C×P1

C) ? Set

h1 = {0}×P1
C h2 = P1

C×{0} U = P1
C×P1

C� (h1 ∪h2).

Since U is isomorphic to the affine space A2, every divisor on U is the divisor of a rational
function. Let us consider a divisor on P1

C×P1
C, then D|U = divφ so

D = divφ+nh1 +mh2

for some integers n and m. Furthermore D ∼ nh1 +mh2. Hence Pic(P1
C×P1

C) is generated by the
classes of h1 and h2. Obviously h1 ·h2 = 1. Moreover

h1 ·h1 ∼ h1 · ({∞}×P1
C)

as h1 ∼ {∞}×P1
C. Since h1 ∩ ({∞}×P1

C) = /0 one gets h2
1 = 0. Similarly h2

2 = 0.

Solution 3. We can replace C and C′ by linearly equivalent divisors and so assume that p lies on
no component of C nor C′. Therefore obviously π∗C ·π∗C′ =C ·C′, and π∗C ·E = 0.

Take C a curve passing through p with multiplicity 1. Its strict transform C̃ meets E trans-
versely at one point which corresponds in E to the tangent direction defined at p by C. Thus
C ·E = 1. From C̃ = π∗C−E (Lemma 1.7) and π∗C ·E = 0 we get E2 =−1.

Solution 4. Let us prove that

φ : Pic(S)⊕Z→ Pic(BlpS) (D,n) �→ π∗D+nE

is an isomorphism. Every irreducible curve on BlpS except E is a strict transform of its image in
S, hence φ is surjective. Assume that there is a divisor D on S such that π∗D+nE = 0. Taking the
intersection with E we get that n = 0 and upon applying π∗ we see that D = 0.
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Let H be a generic line. Note that E1 = E, E2 = F, E3 = H. Consider the basis {H, E, F, G}.
After the first blow-up ∆ and E are swapped; the point blown up is the intersection of ∆′ and ∆′′ so
∆ → ∆+F+G. Then σ∗E = H−F−G. Similarly we have

{
σ∗F = H−E−G
σ∗G = H−E−F

It remains to determine σ∗H. The image of a generic line by σ is a conic hence σ∗H = 2H−m1E−
m2F−m3G. Let L be a generic line given by a0z0 +a1z1 +a2z2. A computation shows that

(u1,v1)→ (u1,u1v1)(z1,z2) → (u2
1v1 : u1v1 : u1)→ u1(a0v2 +a1u2v2 +a2)

vanishes to order 1 on E = {u1 = 0} thus m1 = 1. Note also that

(u2,v2)→ (u2,u2v2)(z0,z2) → (u2v2 : u2
2v2 : u2)→ u2(a0v2 +a1u2v2 +a2),

respectively

(u3,v3)→ (u3,u3v3)(z0,z1) → (u3v3 : u3 : u2
3v3)→ u3(a0v3 +a1 +a2u3v3)

vanishes to order 1 on F = {u2 = 0}, resp. G = {u3 = 0} so m2 = 1, resp. m3 = 1. Therefore
σ∗H = 2H−E−F−G and the characteristic matrix of σ in the basis

{
H, E, F, G

}
is

Mσ =




2 1 1 1
−1 0 −1 −1
−1 −1 0 −1
−1 −1 −1 0



.

Exercice 13. Let us consider the involution given by

ρ : P2
C ��� P2

C, (z0 : z1 : z2) ��� (z0z1 : z2
2 : z1z2).

We can show that Mρ = Mσ.

Exercice 14. Consider the birational map

τ : P2
C ��� P2

C, (z0 : z1 : z2) ��� (z2
0 : z0z1 : z2

1 − z0z2).

We can verify that Mτ = Mσ.
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Solution 1. — Let us determine Pic(Pn
C). Consider the homomorphism of groups given by

θ : Div(Pn
C)→ Z, D �→ degD.

Let D be in kerθ; write D as ∑
i

aiDi where Di denotes a prime divisor given by a homogeneous

polynomial fi ∈ C[z0,z1, . . . ,zn] of some degree di. Since ∑
i

aidi = 0 one has: f = ∏
i

f ai
i belongs

to C(Pn
C)

∗, and by construction D = div f so D is a prime divisor.
Conversely any prime divisor is equal to div g

h where g, h are polynomials of the same degree;
any principal divisor thus belongs to kerθ.

In other words kerθ is the subgroup of principal divisors. So Div(Pn
C)

/
kerθ � Z.

Solution 2. — Let us determine Pic(P1
C×P1

C) ? Set

h1 = {0}×P1
C h2 = P1

C×{0} U = P1
C×P1

C� (h1 ∪h2).

Since U is isomorphic to the affine space A2, every divisor on U is the divisor of a rational
function. Let us consider a divisor on P1

C×P1
C, then D|U = divφ so

D = divφ+nh1 +mh2

for some integers n and m. Furthermore D ∼ nh1 +mh2. Hence Pic(P1
C×P1

C) is generated by the
classes of h1 and h2. Obviously h1 ·h2 = 1. Moreover

h1 ·h1 ∼ h1 · ({∞}×P1
C)

as h1 ∼ {∞}×P1
C. Since h1 ∩ ({∞}×P1

C) = /0 one gets h2
1 = 0. Similarly h2

2 = 0.

Solution 3. We can replace C and C′ by linearly equivalent divisors and so assume that p lies on
no component of C nor C′. Therefore obviously π∗C ·π∗C′ =C ·C′, and π∗C ·E = 0.

Take C a curve passing through p with multiplicity 1. Its strict transform C̃ meets E trans-
versely at one point which corresponds in E to the tangent direction defined at p by C. Thus
C ·E = 1. From C̃ = π∗C−E (Lemma 1.7) and π∗C ·E = 0 we get E2 =−1.

Solution 4. Let us prove that

φ : Pic(S)⊕Z→ Pic(BlpS) (D,n) �→ π∗D+nE

is an isomorphism. Every irreducible curve on BlpS except E is a strict transform of its image in
S, hence φ is surjective. Assume that there is a divisor D on S such that π∗D+nE = 0. Taking the
intersection with E we get that n = 0 and upon applying π∗ we see that D = 0.
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Solution 5. Recall that if D=∑i aiDi is a divisor, and if all the ai are non zero, the support SuppD
of D is ∪iDi.

Consider a differential form ω ∈ Ω2(S) such that p does not belong to Supp(divω). Since
π : BlpS�E → S� {p} is an isomorphism, obviously div(π∗ω) = π∗(divω) over BlpS� E. If x
and y are local parameters at p then ω = f dx∧ dy where f denotes an element of Op such that
f (p) �= 0. Let us blow up p: set {

x = u
y = uv

Then π∗ω = π∗( f )udu∧dv on S, and since π∗( f ) �= 0 on E we get

div(π∗ω) = π∗(divω)+E

that is KBlpS = π∗KS +E.

Solution 6. — Any element φ of Aut(P2
C) satisfies Indφ = Excφ = /0.

Solution 7. — One has



Indσ =
{
(1 : 0 : 0), (0 : 1 : 0), (0 : 0 : 1)

}
, Excσ =

{
z0 = 0

}
∪
{

z1 = 0
}
∪
{

z2 = 0
}

Indρ =
{
(1 : 0 : 0), (0 : 1 : 0)

}
, Excρ =

{
z0 = 0

}
∪
{

z2 = 0
}

Indτ =
{
(1 : 0 : 0)

}
, Excτ =

{
z2 = 0

}

Solution 8. — The linear system defined by σ is the set of conics in P2
C passing through (1 : 0 : 0),

(0 : 1 : 0) and (0 : 0 : 1).

The linear system defined by ρ is the set of conics in P2
C passing through (1 : 0 : 0), (0 : 1 : 0)

and tangent to z2 = 0.

The linear system defined by τ is the set of conics in P2
C passing through (1 : 0 : 0) that are

tangent to z2 = 0, and osculate it.

Solution 9. —

• Any birational map of finite order is elliptic; any element of the following groups

Aut(P2
C),

{
(αz0 +P(z1),βz1 + γ) |α, β ∈ C∗, γ ∈ C, P ∈ C[z1]}

is elliptic.
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• Any element of J of the form
(

a(z1)z0 +b(z1)

c(z1)z0 +d(z1)
,z1

)

with (trM)2

detM ∈ C(z1)�C where M denotes the matrix defined by

[
a(z1) b(z1)

c(z1) d(z1)

]

is a Jonquières twist ([10]).

• Let φ be the birational self-map of P2
C given by

φ = (z0z2
2 + z3

1 −2z1z2
2 : z1z2

2 : z0z2
2 + z3

1 + z1z2
2 − z3

2).

One has degφn ∼ n2.

• Consider the family of birational maps ( fε) given by ([18])

fε =

(
z1 +1− ε,z0

z1 − ε
z1 +1

)
.

If

• ε =−1, then fε is elliptic,

• ε ∈ {0,1}, then fε is a Jonquières twist,

• ε ∈ {1/2,1/3}, then fε is a Halphen twist,

• ε ∈ {∪k≥41/k}, then fε is hyperbolic.

Solution 10 ([2], Theorem 2.7). As X lies in some projective space, one can assume that X = Pm
C.

Of course one can suppose that φ(S) lies in no hyperplane of Pm
C. Hence φ corresponds to a linear

system S ⊂ |D| of dimension m on S.

If S has no base point, then φ is a morphism, and we are done.

Consider now the case where φ has a base point p1. Let π1 : Blp1S → S be the blow-up of
p1. Then the exceptional curve E1 occurs in the fixed part of the linear system π∗

1S ⊂ |π∗
1D| with

some multiplicity k1 ≥ 1. That is the system S1 ⊂ |π∗
1D−k1E1| obtained by subtracting k1E1 from

each element of π∗
1S has no fixed component. It thus defines a rational map φ1 = φπ1 : S1 ��� Pm

C.
If φ1 is a morphism, then we are done. Otherwise we repeat the process. Hence by induction we
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Solution 5. Recall that if D=∑i aiDi is a divisor, and if all the ai are non zero, the support SuppD
of D is ∪iDi.

Consider a differential form ω ∈ Ω2(S) such that p does not belong to Supp(divω). Since
π : BlpS�E → S� {p} is an isomorphism, obviously div(π∗ω) = π∗(divω) over BlpS� E. If x
and y are local parameters at p then ω = f dx∧ dy where f denotes an element of Op such that
f (p) �= 0. Let us blow up p: set {

x = u
y = uv

Then π∗ω = π∗( f )udu∧dv on S, and since π∗( f ) �= 0 on E we get

div(π∗ω) = π∗(divω)+E

that is KBlpS = π∗KS +E.

Solution 6. — Any element φ of Aut(P2
C) satisfies Indφ = Excφ = /0.

Solution 7. — One has



Indσ =
{
(1 : 0 : 0), (0 : 1 : 0), (0 : 0 : 1)

}
, Excσ =

{
z0 = 0

}
∪
{

z1 = 0
}
∪
{

z2 = 0
}

Indρ =
{
(1 : 0 : 0), (0 : 1 : 0)

}
, Excρ =

{
z0 = 0

}
∪
{

z2 = 0
}

Indτ =
{
(1 : 0 : 0)

}
, Excτ =

{
z2 = 0

}

Solution 8. — The linear system defined by σ is the set of conics in P2
C passing through (1 : 0 : 0),

(0 : 1 : 0) and (0 : 0 : 1).

The linear system defined by ρ is the set of conics in P2
C passing through (1 : 0 : 0), (0 : 1 : 0)

and tangent to z2 = 0.

The linear system defined by τ is the set of conics in P2
C passing through (1 : 0 : 0) that are

tangent to z2 = 0, and osculate it.

Solution 9. —

• Any birational map of finite order is elliptic; any element of the following groups

Aut(P2
C),

{
(αz0 +P(z1),βz1 + γ) |α, β ∈ C∗, γ ∈ C, P ∈ C[z1]}

is elliptic.
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• Any element of J of the form
(

a(z1)z0 +b(z1)

c(z1)z0 +d(z1)
,z1

)

with (trM)2

detM ∈ C(z1)�C where M denotes the matrix defined by

[
a(z1) b(z1)

c(z1) d(z1)

]

is a Jonquières twist ([10]).

• Let φ be the birational self-map of P2
C given by

φ = (z0z2
2 + z3

1 −2z1z2
2 : z1z2

2 : z0z2
2 + z3

1 + z1z2
2 − z3

2).

One has degφn ∼ n2.

• Consider the family of birational maps ( fε) given by ([18])

fε =

(
z1 +1− ε,z0

z1 − ε
z1 +1

)
.

If

• ε =−1, then fε is elliptic,

• ε ∈ {0,1}, then fε is a Jonquières twist,

• ε ∈ {1/2,1/3}, then fε is a Halphen twist,

• ε ∈ {∪k≥41/k}, then fε is hyperbolic.

Solution 10 ([2], Theorem 2.7). As X lies in some projective space, one can assume that X = Pm
C.

Of course one can suppose that φ(S) lies in no hyperplane of Pm
C. Hence φ corresponds to a linear

system S ⊂ |D| of dimension m on S.

If S has no base point, then φ is a morphism, and we are done.

Consider now the case where φ has a base point p1. Let π1 : Blp1S → S be the blow-up of
p1. Then the exceptional curve E1 occurs in the fixed part of the linear system π∗

1S ⊂ |π∗
1D| with

some multiplicity k1 ≥ 1. That is the system S1 ⊂ |π∗
1D−k1E1| obtained by subtracting k1E1 from

each element of π∗
1S has no fixed component. It thus defines a rational map φ1 = φπ1 : S1 ��� Pm

C.
If φ1 is a morphism, then we are done. Otherwise we repeat the process. Hence by induction we
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get a sequence πn ◦πn−1 ◦ . . .◦π1 of blow-ups and a linear system Sn ⊂ |Dn = π∗
nDn−1 −knEn| on

Sn with no fixed part. Note that

D2
n = D2

n−1 − k2
n < D2

n−1.

Since Sk has no fixed part D2
k ≥ 0 for all k and so a finite number of blow-ups is needed. In other

words after a finite number of blow-ups one gets a linear system with no base points which defines
a morphism SN → Pm

C.

Solution 11 ([2], Lemma 2.9). Suppose S affine, with π−1(p) �= /0, so that there is an embedding
ι : S ↪→ An. The rational map ι ◦ φ−1 : S′ ��� An is defined by rational functions ψ1, . . ., ψn;
furthermore one of them, for instance ψ1, is not defined at p, that is ψ1 �∈ OS′,p. One can write ψ1

as u
v with u, v in OS′,p, u and v coprime, and v(p) = 0. Let us consider the curve C on S defined

by φ∗v = 0. Denote by x1 the first coordinate function on S ⊂ An; on S one has φ∗u = x1φ∗v. It
follows that φ∗u = φ∗v = 0 on C so that C = φ−1({u = v = 0}). Since u and v are coprime the set
{u = v = 0} is finite. Shrinking S′ if needed one can assume that {u = v = 0} = {p}, and thus
C = φ−1(p).

Solution 12 ([30]). Assume that ψ = π−1φ is not a morphism. Let m be a point of S such that ψ is
not defined at m. On the one hand φ(m) = p and φ is not locally invertible at m, on the other hand
there exists a curve in BlpS′ contracted on m by ψ−1 (Exercise 11). This curve is necessarily the
exceptional divisor E obtained by blowing up.

Let q1, q2 be two different points of E at which ψ−1 is well defined and let C1, C2 be two
germs of smooth curves transverse to E. Then π(C1) and π(C2) are two germs of smooth curve
transverse at p which are the image by φ of two germs of curves at m. The differential of φ at m is
thus of rank 2: contradiction with the fact that φ is not locally invertible at m.
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S

ψ−1(C2)
ψ−1(C1)

φ

πψ

S′

m

p = φ(m)

π(C1) π(C2)

C1 C2

q1 q2

E

S̃

Solution 13. — We can show that Mρ = Mσ.

Solution 14. — We can verify that Mτ = Mσ.
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get a sequence πn ◦πn−1 ◦ . . .◦π1 of blow-ups and a linear system Sn ⊂ |Dn = π∗
nDn−1 −knEn| on

Sn with no fixed part. Note that

D2
n = D2

n−1 − k2
n < D2

n−1.

Since Sk has no fixed part D2
k ≥ 0 for all k and so a finite number of blow-ups is needed. In other

words after a finite number of blow-ups one gets a linear system with no base points which defines
a morphism SN → Pm

C.

Solution 11 ([2], Lemma 2.9). Suppose S affine, with π−1(p) �= /0, so that there is an embedding
ι : S ↪→ An. The rational map ι ◦ φ−1 : S′ ��� An is defined by rational functions ψ1, . . ., ψn;
furthermore one of them, for instance ψ1, is not defined at p, that is ψ1 �∈ OS′,p. One can write ψ1

as u
v with u, v in OS′,p, u and v coprime, and v(p) = 0. Let us consider the curve C on S defined

by φ∗v = 0. Denote by x1 the first coordinate function on S ⊂ An; on S one has φ∗u = x1φ∗v. It
follows that φ∗u = φ∗v = 0 on C so that C = φ−1({u = v = 0}). Since u and v are coprime the set
{u = v = 0} is finite. Shrinking S′ if needed one can assume that {u = v = 0} = {p}, and thus
C = φ−1(p).

Solution 12 ([30]). Assume that ψ = π−1φ is not a morphism. Let m be a point of S such that ψ is
not defined at m. On the one hand φ(m) = p and φ is not locally invertible at m, on the other hand
there exists a curve in BlpS′ contracted on m by ψ−1 (Exercise 11). This curve is necessarily the
exceptional divisor E obtained by blowing up.

Let q1, q2 be two different points of E at which ψ−1 is well defined and let C1, C2 be two
germs of smooth curves transverse to E. Then π(C1) and π(C2) are two germs of smooth curve
transverse at p which are the image by φ of two germs of curves at m. The differential of φ at m is
thus of rank 2: contradiction with the fact that φ is not locally invertible at m.
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S

ψ−1(C2)
ψ−1(C1)

φ

πψ

S′

m

p = φ(m)

π(C1) π(C2)

C1 C2

q1 q2

E

S̃

Solution 13. — We can show that Mρ = Mσ.

Solution 14. — We can verify that Mτ = Mσ.
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2 Generation of the Cremona group in any dimension

2.1 In dimension 2

Recall that σ and ρ are the elements of Bir(P2
C) given by

σ = (z1z2 : z0z2 : z0z1), ρ = (z0z2 : z0z1 : z2
2).

Theorem 2.1 ([31, 9]). — The group Bir(P2
C) is generated by Aut(P2

C) = PGL(3,C) and σ:

Bir(P2
C) = 〈PGL(3,C), σ〉.

Let us remark that σ = (z1 : z2 : z0)ρ(z1 : z2 : z0)ρ, hence

Bir(P2
C) = 〈PGL(3,C), ρ〉.

Definition 2.2. — Let φ0, φ1, . . ., φn ∈ C(z0,z1, . . . ,zn) be some rational functions; we define

jac(φ0,φ1, . . . ,φn) = det

([
∂φi

∂z j

]

0≤i, j≤n

)
∈ C(z0,z1, . . . ,zn).

Definition 2.3. — If φ = (φ0 : φ1 : . . . : φn) is a birational self-map of Pn
C, the jacobian determi-

nant of φ is defined to be jac(φ0,φ1, . . . ,φn). It is defined up to multiplication with the (n+1)-th
power of an element of C∗, and has degree (n+1)(d −1).

Remark 2.4. — The jacobian determinant of φ ∈ Bir(Pn
C) is a polynomial which determines the

hypersurfaces of Pn
C where the map φ is not locally an isomorphism.

One can check that det jacτ is a perfect cube, and the jacobian determinant of any element φ
in 〈PGL(3,C), τ〉 is a perfect cube ([24]); therefore

〈PGL(3,C), τ〉� Bir(P2
C).

Alexander showed Theorem 2.1; we will follow its proof ([1]). Let us first introduce some
definitions and notations. Let us consider a birational map φ of P2

C of degree d > 1 (note that
if d = 1, then according to Lemma 2.5 the map φ is an automorphism of P2

C, and thus satisfies
Theorem 2.1). Denote by p0, p1, . . ., pk the base points of φ, and by mi the multiplicity of pi.
Assume up to reindexation that

m0 ≥ m1 ≥ . . .≥ mk.

Let S be a surface, and let p be a point of S. The exceptional divisor obtained by blowing up
p is called first infinitesimal neighborhood, and the points of E are called infinitely near p.
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The k-th infinitesimal neighborhood of p is the set of points contained in the first infinitesimal
neighborhood of a point of the (k− 1)-th infinitesimal neighborhood of p. On the contrary the
points of S are called proper point. The general quadratic birational map centered at p, q, and
r is the application (defined up to automorphism) ψ ∈ O(σ) such that Indψ = {p, q, r}.

In his proof Noether showed that for any φ ∈ Bir(P2
C) one can find a general quadratic bi-

rational map ψ such that degφψ < degφ, and so by induction proved that φ = ψ1ψ2 . . .ψ� up to
automorphism of P2

C where ψi are general quadratic birational maps. But it is false for instance
if one of the base points is proper and the others in its infinitesimal neighborhoods. To give a
complete proof Alexander introduces the complexity of the linear system associated to φ defined
by

2c = d −m0.

Geometrically it is the number of points except p0 that belong to the intersection of a generic line
through p0 and a curve of the linear system. Denote by C the set of points defined by

C =
{

pi | i ≥ 1, mi > c
}

and by n the cardinal of C. Alexander’s idea is the following: apply to φ a sequence of general
quadratic birational maps in order to decrease the complexity c until c = 1 and the cardinal n until
n = 0.

Lemma 2.5. — Let φ be a birational self-map of P2
C of degree d. Let p0, p1, . . ., pk be the base

points of φ, and m0, m1, . . ., mk be their multiplicity. Then

k

∑
j=0

m2
j = d2 −1 (2.1)

k

∑
j=0

m j(m j −1) = (d −1)(d −2) (2.2)

k

∑
j=0

m j = 3d −3 (2.3)

Proof. One gets (2.3) from (2.1) and (2.2) as follows :

k

∑
j=0

m j = −
k

∑
j=0

m j(m j −1)+
k

∑
j=0

m2
j

= −(d −1)(d −2)+d2 −1

= 3d −3

VIII ESCUELA DOCTORAL INTERCONTINENTAL DE MATEMÁTICAS PUCP - UVA 159

168

VIII Escuela Doctoral Intercontinental de Matemáticas PUCP-UVA 2015



J. DÉSERTI

2 Generation of the Cremona group in any dimension

2.1 In dimension 2

Recall that σ and ρ are the elements of Bir(P2
C) given by

σ = (z1z2 : z0z2 : z0z1), ρ = (z0z2 : z0z1 : z2
2).

Theorem 2.1 ([31, 9]). — The group Bir(P2
C) is generated by Aut(P2

C) = PGL(3,C) and σ:

Bir(P2
C) = 〈PGL(3,C), σ〉.

Let us remark that σ = (z1 : z2 : z0)ρ(z1 : z2 : z0)ρ, hence

Bir(P2
C) = 〈PGL(3,C), ρ〉.

Definition 2.2. — Let φ0, φ1, . . ., φn ∈ C(z0,z1, . . . ,zn) be some rational functions; we define

jac(φ0,φ1, . . . ,φn) = det

([
∂φi

∂z j

]

0≤i, j≤n

)
∈ C(z0,z1, . . . ,zn).

Definition 2.3. — If φ = (φ0 : φ1 : . . . : φn) is a birational self-map of Pn
C, the jacobian determi-

nant of φ is defined to be jac(φ0,φ1, . . . ,φn). It is defined up to multiplication with the (n+1)-th
power of an element of C∗, and has degree (n+1)(d −1).

Remark 2.4. — The jacobian determinant of φ ∈ Bir(Pn
C) is a polynomial which determines the

hypersurfaces of Pn
C where the map φ is not locally an isomorphism.

One can check that det jacτ is a perfect cube, and the jacobian determinant of any element φ
in 〈PGL(3,C), τ〉 is a perfect cube ([24]); therefore

〈PGL(3,C), τ〉� Bir(P2
C).

Alexander showed Theorem 2.1; we will follow its proof ([1]). Let us first introduce some
definitions and notations. Let us consider a birational map φ of P2

C of degree d > 1 (note that
if d = 1, then according to Lemma 2.5 the map φ is an automorphism of P2

C, and thus satisfies
Theorem 2.1). Denote by p0, p1, . . ., pk the base points of φ, and by mi the multiplicity of pi.
Assume up to reindexation that

m0 ≥ m1 ≥ . . .≥ mk.

Let S be a surface, and let p be a point of S. The exceptional divisor obtained by blowing up
p is called first infinitesimal neighborhood, and the points of E are called infinitely near p.
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The k-th infinitesimal neighborhood of p is the set of points contained in the first infinitesimal
neighborhood of a point of the (k− 1)-th infinitesimal neighborhood of p. On the contrary the
points of S are called proper point. The general quadratic birational map centered at p, q, and
r is the application (defined up to automorphism) ψ ∈ O(σ) such that Indψ = {p, q, r}.

In his proof Noether showed that for any φ ∈ Bir(P2
C) one can find a general quadratic bi-

rational map ψ such that degφψ < degφ, and so by induction proved that φ = ψ1ψ2 . . .ψ� up to
automorphism of P2

C where ψi are general quadratic birational maps. But it is false for instance
if one of the base points is proper and the others in its infinitesimal neighborhoods. To give a
complete proof Alexander introduces the complexity of the linear system associated to φ defined
by

2c = d −m0.

Geometrically it is the number of points except p0 that belong to the intersection of a generic line
through p0 and a curve of the linear system. Denote by C the set of points defined by

C =
{

pi | i ≥ 1, mi > c
}

and by n the cardinal of C. Alexander’s idea is the following: apply to φ a sequence of general
quadratic birational maps in order to decrease the complexity c until c = 1 and the cardinal n until
n = 0.

Lemma 2.5. — Let φ be a birational self-map of P2
C of degree d. Let p0, p1, . . ., pk be the base

points of φ, and m0, m1, . . ., mk be their multiplicity. Then

k

∑
j=0

m2
j = d2 −1 (2.1)

k

∑
j=0

m j(m j −1) = (d −1)(d −2) (2.2)

k

∑
j=0

m j = 3d −3 (2.3)

Proof. One gets (2.3) from (2.1) and (2.2) as follows :

k

∑
j=0

m j = −
k

∑
j=0

m j(m j −1)+
k

∑
j=0

m2
j

= −(d −1)(d −2)+d2 −1

= 3d −3
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Exercice 15. — Prove relation (2.1).

Exercice 16. — Prove equality (2.2).

Exercice 17. Prove that 2c ≥ 0.

Exercice 18. Prove the following inequality: 2c ≥ 1.

Exercice 19. Prove that
2c ≥ m1 ≥ m2 ≥ . . .≥ mn > c.

Take a general quadratic birational map ψ centered at p, q, and r; the lines (pq), (qr), and (pr)
are blown down by ψ onto r′, p′, and q′:

(pr) (pq)

(qr)

r′

p′

q′

q

p

r

Lemma 2.6. If d > 1, then n ≥ 2. Hence m0 >
d
3 .

Furthermore if n ≥ 3, then the points pi with i ∈ {1, 2, . . . , k} are not all aligned.

Exercice 20. Prove Lemma 2.6

Lemma 2.7. Compose φ with a general quadratic birational map centered at p0, q, and r; the
complexity of the system is constant if and only if the point p′0 is the point of maximal multiplicity.
Otherwise the complexity of the system decreases.

Exercice 21. Prove Lemma 2.7

Lemma 2.8. Assume that there exist two points pi and p j in C which are not infinitely near, and
not infinitely near p0. After composition with a general quadratic map centered at p0, pi, and p j

then

• either the complexity of the system decreases,

• or the cardinal of C decreases by 2.
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Proof. Let us compose φ with a general quadratic birational map whose base points are p0, pi and
p j

p0

pi

p j p′0

p′i

p′j

Ep0

Epi

Ep j

Denote by L′ the new linear system; the degree d′ of L′ is

d′ = 2d −m0 −mi −m j

furthermore 


m′
j = d −m0 −mi < c

m′
0 = d −mi −m j

m′
i = d −m0 −m j < c

Let C′ be the set of base points with multiplicity strictly larger than c′. One has

d′ = d +(d −m0 −mi −m j) = d +(2c−mi −m j).

In particular d′ < d.
After this composition

• p0, pi, and p j are not base points anymore (they have been blown up on lines);

• the other base points don’t change, and their multiplicity remains constant;

• there are three new base points p′0, p′i, and p′j.

The multiplicity of the new base points is equal to the number of intersections (counted with
multiplicity) of the corresponding line (that is contracted) and the strict transform of a general
curve of the linear system. According to Bezout theorem one has





m′
0 = d −mi −m j

m′
i = d −m0 −m j

m′
j = d −m0 −mi

Let us now distinguish two cases: the case where p′0 is not the point of highest multiplicity and the
case where it is:
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(pr) (pq)

(qr)

r′
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q′

q

p

r

Lemma 2.6. If d > 1, then n ≥ 2. Hence m0 >
d
3 .

Furthermore if n ≥ 3, then the points pi with i ∈ {1, 2, . . . , k} are not all aligned.

Exercice 20. Prove Lemma 2.6

Lemma 2.7. Compose φ with a general quadratic birational map centered at p0, q, and r; the
complexity of the system is constant if and only if the point p′0 is the point of maximal multiplicity.
Otherwise the complexity of the system decreases.

Exercice 21. Prove Lemma 2.7

Lemma 2.8. Assume that there exist two points pi and p j in C which are not infinitely near, and
not infinitely near p0. After composition with a general quadratic map centered at p0, pi, and p j

then

• either the complexity of the system decreases,

• or the cardinal of C decreases by 2.
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Proof. Let us compose φ with a general quadratic birational map whose base points are p0, pi and
p j

p0

pi

p j p′0

p′i

p′j

Ep0

Epi

Ep j

Denote by L′ the new linear system; the degree d′ of L′ is

d′ = 2d −m0 −mi −m j

furthermore 


m′
j = d −m0 −mi < c

m′
0 = d −mi −m j

m′
i = d −m0 −m j < c

Let C′ be the set of base points with multiplicity strictly larger than c′. One has

d′ = d +(d −m0 −mi −m j) = d +(2c−mi −m j).

In particular d′ < d.
After this composition

• p0, pi, and p j are not base points anymore (they have been blown up on lines);

• the other base points don’t change, and their multiplicity remains constant;

• there are three new base points p′0, p′i, and p′j.

The multiplicity of the new base points is equal to the number of intersections (counted with
multiplicity) of the corresponding line (that is contracted) and the strict transform of a general
curve of the linear system. According to Bezout theorem one has





m′
0 = d −mi −m j

m′
i = d −m0 −m j

m′
j = d −m0 −mi

Let us now distinguish two cases: the case where p′0 is not the point of highest multiplicity and the
case where it is:
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• if p′0 is not the point of highest multiplicity, then the complexity of the system decreases
(Lemma 2.7);

• otherwise p′0 is the point of highest multiplicity, then the complexity of the system remains
constant (Lemma 2.7). According to Lemma 2.6 the point p′0 belongs to C′. Moreover since
mi > c, m j > c, and d −m0 = 2c then m′

i < c, m′
j < c that is p′i and p′j don’t belong to C′.

Hence n′ = n−2.

Lemma 2.9. Suppose that there exists a base point pk in C which is not infinitely near p0. After
composition with a general quadratic birational map

• there is no infinitely near base points above p0 (resp. pk),

• there is no infinitely near base points above p′0,

• the complexity of the linear system remains constant,

• the cardinal of C remains constant.

Proof. Let us compose φ with a general quadratic birational map centered at p0, pk, and q such
that

• the lines (p0q) and (pkq) don’t contain base points;

• there is no base point infinitely near pk in the direction of the line (pkq);

• there is no base point infinitely near p0 in the direction of the line (p0q).

p0

pk

q p′0

p′k

q′

Ep0

Epk

Eq

p j

pip�

p′j

p′ip′�

Remark that the degree increases; indeed, the degree of the new system is

d′ = 2d −m0 −mk = d +2c−mk ≥ d

and 


m′
0 = d −mk ≥ d −m0 = 2c ≥ m1

m′
q = d −m0 −mk = 2c−mk < c

m′
k = d −m0 = 2c > c
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In particular the base point p′0 is the point of highest multiplicity. The complexity remains
constant (Lemma 2.7). The cardinal of C is equal to the cardinal of C′: we blow up two points of
C and get two new points.

We don’t transform a point infinitely near pk (resp. p0) in a point infinitely near p′0 nor q′.
Indeed assume by contradiction that we transform a point pi infinitely near pk in a point infinitely
near q′. It means that pk is in the direction of the line (p0 pk). Denoting by D the divisor repre-
senting (p0 pk) one has

(C ·D)pk = mk +mi

so
C ·D = m0 +mk +mi > m0 +2c = d

which is impossible by Bezout theorem. The same holds if we consider a point infinitely near p0.

Lemma 2.10. Assume that all points of C are infinitely near p0. After composing with a general
quadratic birational map

• there is no infinitely near base point above the point of highest multiplicity p′0,

• the complexity of the linear system remains constant,

• the cardinal of C decreases by 2.

Proof. Compose φ with a general quadratic birational map centered at p0, r, and q such that

• the lines (p0r), (p0q), and (rq) don’t contain base points of the new system;

• the lines (p0r), (p0q), and (rq) are not in the direction of the points infinitely near p0.

p0

r

q p′0

r′

q′

Ep0

Er

Eq

p j

p� p′j

p′�

The degree strictly increases; indeed d′ = 2d−m0 > d. Since the elements of the linear system
don’t pass through r and q hence according to Bezout theorem p′0 is a point of multiplicity d. It is
thus the point of highest multiplicity. Moreover the complexity of the system is

2c′ = 2d −m0 −d = d −m0 = 2c.
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• if p′0 is not the point of highest multiplicity, then the complexity of the system decreases
(Lemma 2.7);

• otherwise p′0 is the point of highest multiplicity, then the complexity of the system remains
constant (Lemma 2.7). According to Lemma 2.6 the point p′0 belongs to C′. Moreover since
mi > c, m j > c, and d −m0 = 2c then m′

i < c, m′
j < c that is p′i and p′j don’t belong to C′.

Hence n′ = n−2.

Lemma 2.9. Suppose that there exists a base point pk in C which is not infinitely near p0. After
composition with a general quadratic birational map

• there is no infinitely near base points above p0 (resp. pk),

• there is no infinitely near base points above p′0,

• the complexity of the linear system remains constant,

• the cardinal of C remains constant.

Proof. Let us compose φ with a general quadratic birational map centered at p0, pk, and q such
that

• the lines (p0q) and (pkq) don’t contain base points;

• there is no base point infinitely near pk in the direction of the line (pkq);

• there is no base point infinitely near p0 in the direction of the line (p0q).

p0

pk

q p′0

p′k

q′

Ep0

Epk

Eq

p j

pip�

p′j

p′ip′�

Remark that the degree increases; indeed, the degree of the new system is

d′ = 2d −m0 −mk = d +2c−mk ≥ d

and 


m′
0 = d −mk ≥ d −m0 = 2c ≥ m1

m′
q = d −m0 −mk = 2c−mk < c

m′
k = d −m0 = 2c > c
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In particular the base point p′0 is the point of highest multiplicity. The complexity remains
constant (Lemma 2.7). The cardinal of C is equal to the cardinal of C′: we blow up two points of
C and get two new points.

We don’t transform a point infinitely near pk (resp. p0) in a point infinitely near p′0 nor q′.
Indeed assume by contradiction that we transform a point pi infinitely near pk in a point infinitely
near q′. It means that pk is in the direction of the line (p0 pk). Denoting by D the divisor repre-
senting (p0 pk) one has

(C ·D)pk = mk +mi

so
C ·D = m0 +mk +mi > m0 +2c = d

which is impossible by Bezout theorem. The same holds if we consider a point infinitely near p0.

Lemma 2.10. Assume that all points of C are infinitely near p0. After composing with a general
quadratic birational map

• there is no infinitely near base point above the point of highest multiplicity p′0,

• the complexity of the linear system remains constant,

• the cardinal of C decreases by 2.

Proof. Compose φ with a general quadratic birational map centered at p0, r, and q such that

• the lines (p0r), (p0q), and (rq) don’t contain base points of the new system;

• the lines (p0r), (p0q), and (rq) are not in the direction of the points infinitely near p0.

p0

r

q p′0

r′

q′

Ep0

Er

Eq

p j

p� p′j

p′�

The degree strictly increases; indeed d′ = 2d−m0 > d. Since the elements of the linear system
don’t pass through r and q hence according to Bezout theorem p′0 is a point of multiplicity d. It is
thus the point of highest multiplicity. Moreover the complexity of the system is

2c′ = 2d −m0 −d = d −m0 = 2c.

VIII ESCUELA DOCTORAL INTERCONTINENTAL DE MATEMÁTICAS PUCP - UVA 163

173

About the Cremona group / Julie Déserti



J. DÉSERTI

Any curve of the linear system intersects (p0r) and (p0q) at d−m0 = 2c points so q′ and r′ become
base points of the system, and m′

r = m′
q = 2c > c = c′. As a consequence n′ = n+2.

The points infinitely near p0 are dispersed on the line (r′q′); thanks to the assumption on the
line (rq) there is no base point infinitely near p′0.

Proof of Theorem 2.1. Let us first describe the two keysteps:

Step a: if there is one base point in C that is not infinitely near the base point p0 of highest
multiplicity go to "Step b"; otherwise let us apply Lemma 2.10 to φ. We thus get that there is
no more infinitely near base points above p′0, and n increases by 2. Then since there is no more
infinitely near base points above p′0 one can apply Lemma 2.9 until all the points of C are distinct.
The complexity and the number of base points with multiplicity > c except p′0 remain constant
(still by Lemma 2.9). But now n≥ 3 and so the base points of C are not aligned (Lemma 2.6). Take
two points pi and p j such that p� and pq don’t belong to (p′0 pi), (p′0 p j) and (pi p j). Let us now
apply two times Lemma 2.8 to p� and pq. If the complexity decreases come back to the beginning
of "Step a"; otherwise n+ 2 decreases by 4 and p′0 has no more infinitely near base points with
multiplicity > c so let us go on with "Step b".

Step b is decomposed in two cases:

• either C contains two base points that aren’t infinitely near and one applies Lemma 2.8; if
the complexity decreases come to "Step a", otherwise come back to the beginning of "Step
b";

• or one applies Lemma 2.9 then the base points are "separated" and one comes back to "Step
b".

Using this strategy one gets first that the complexity decreases until 1, and then that the cardinal
of C is zero. We thus have a system with at most one base point p′0, i.e. using Lemma 2.5 and the
definition of c the two following equalities hold

{
m0 = 3d −3
1 = d −m0

Therefore d = 1 and m0 = 0, that is after composing φ with well choosen general quadratic bira-
tional maps φ is an automorphism of P2

C.
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2.2 In higher dimensions

Theorem 2.11 ([27, 32]). — Let n ≥ 3 be an integer. Any set of generators of Bir(Pn
C) contains

an infinite uncountable number of elements of Bir(Pn
C)�Aut(Pn

C).

We follow Cantat’s notes based on the proof of Pan ([32]).

2.2.1 Exceptional hypersurfaces

Definition 2.12. — Let φ be a birational map of Pn
C, and let X be an irreducible hypersurface of

Pn
C. We say that X is φ-exceptional if there exists an open subset U of X which is mapped onto a

subset of codimension ≥ 2 by φ.

Lemma 2.13. — Let φ1, φ2, . . ., φm be some birational self-maps of Pn
C. Consider

φ = φmφm−1 . . .φ1.

The irreducible hypersurface X of Pn
C is φ-exceptional if there exist an integer i between 1 and m,

and a φi-exceptional hypersurface Xi such that Xi is birational equivalent to X.

2.2.2 Jonquières maps with prescribed exceptional set

Consider the homogeneous coordinates (z0 : z1 : . . . : zn−1) on Pn−1
C , and the homogeneous coordi-

nates (u : v) on P1
C. Let Y be an irreducible hypersurface of degree d in Pn−1

C , distinct from z0 = 0.
Assume that h = 0 is a reduced homogeneous equation of Y . Consider the birational map

ψY : Pn−1
C ×P1

C ��� Pn−1
C ×P1

C

defined by
(
(z0 : z1 : . . . : zn−1),(u : v)

)
���

(
(z0 : z1 : . . . : zn−1),(uzd

0 : vh(z0,z1, . . . ,zn−1)
)
.

The map ψY is birational, and ψY contracts the generic points of Y ×P1
C onto the codimension 2

subset Y ×{(1 : 0)} of Pn−1
C ×P1

C.
The projective variety Pn−1

C ×P1
C is birationally equivalent to Pn

C; an explicit birational map
from Pn−1

C ×P1
C to Pn

C is

η : Pn−1
C ×P1

C ��� Pn
C,

(
(z0 : z1 : . . . : zn−1),(u : v)

)
���

(
uz0 : vz0 : vz1 : . . . : vzn−1

)
.

Conjugate ψY by η, and set X = η(Y ×P1
C); since η blows down

(
Y ×{(1 : 0)}

)
�{u = 0}

onto (1 : 0 : 0 : . . . : 0) ∈ Pn
C one gets:
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Any curve of the linear system intersects (p0r) and (p0q) at d−m0 = 2c points so q′ and r′ become
base points of the system, and m′

r = m′
q = 2c > c = c′. As a consequence n′ = n+2.

The points infinitely near p0 are dispersed on the line (r′q′); thanks to the assumption on the
line (rq) there is no base point infinitely near p′0.

Proof of Theorem 2.1. Let us first describe the two keysteps:

Step a: if there is one base point in C that is not infinitely near the base point p0 of highest
multiplicity go to "Step b"; otherwise let us apply Lemma 2.10 to φ. We thus get that there is
no more infinitely near base points above p′0, and n increases by 2. Then since there is no more
infinitely near base points above p′0 one can apply Lemma 2.9 until all the points of C are distinct.
The complexity and the number of base points with multiplicity > c except p′0 remain constant
(still by Lemma 2.9). But now n≥ 3 and so the base points of C are not aligned (Lemma 2.6). Take
two points pi and p j such that p� and pq don’t belong to (p′0 pi), (p′0 p j) and (pi p j). Let us now
apply two times Lemma 2.8 to p� and pq. If the complexity decreases come back to the beginning
of "Step a"; otherwise n+ 2 decreases by 4 and p′0 has no more infinitely near base points with
multiplicity > c so let us go on with "Step b".

Step b is decomposed in two cases:

• either C contains two base points that aren’t infinitely near and one applies Lemma 2.8; if
the complexity decreases come to "Step a", otherwise come back to the beginning of "Step
b";

• or one applies Lemma 2.9 then the base points are "separated" and one comes back to "Step
b".

Using this strategy one gets first that the complexity decreases until 1, and then that the cardinal
of C is zero. We thus have a system with at most one base point p′0, i.e. using Lemma 2.5 and the
definition of c the two following equalities hold

{
m0 = 3d −3
1 = d −m0

Therefore d = 1 and m0 = 0, that is after composing φ with well choosen general quadratic bira-
tional maps φ is an automorphism of P2

C.
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C)�Aut(Pn

C).
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C. Consider
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C to Pn

C is

η : Pn−1
C ×P1

C ��� Pn
C,

(
(z0 : z1 : . . . : zn−1),(u : v)

)
���

(
uz0 : vz0 : vz1 : . . . : vzn−1

)
.

Conjugate ψY by η, and set X = η(Y ×P1
C); since η blows down

(
Y ×{(1 : 0)}

)
�{u = 0}

onto (1 : 0 : 0 : . . . : 0) ∈ Pn
C one gets:
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Lemma 2.14. — For any irreducible hypersurface Y of Pn−1
C of degree d there exist a birational

self-map φY of Pn
C of degree d +1, and a hypersurface X of Pn

C such that

• X is birationally equivalent to Y ×P1
C,

• X is φY -exceptional.

In case n = 3 the previous statement says that: for any irreducible curve C in P2
C of degree �

there exists φC ∈ Bir(P3
C) of degree d +1, and a hypersurface X in P3

C such that

• X is birationally equivalent to C×P1
C,

• and X is φC-exceptional.

Consider now the particular case of smooth plane cubics: the set of these curves is a one-
parameter family so according to Lemma 2.13 one gets Theorem 2.11 for n = 3. More generally
one concludes as follows.

2.2.3 Stable equivalence

Definition 2.15. — Let Y , and Y ′ be two varieties; Y is m-stably equivalent to Y ′ if there exists a
birational map from Y ×Pm

C to Y ′ ×Pm
C.

Remark 2.16. — Be careful there exist complex projective varieties Y of dimension n ≥ 3 such
that Y is not rational but Y is stably equivalent to Pn

C.

Lemma 2.17. — Let Y and Y ′ be two smooth irreducible hypersurfaces of Pn−1
C of degree ≥ n+1.

If Y and Y ′ are m-stably equivalent, then Y and Y ′ are isomorphic.

Lemmas 2.13, 2.14, and 2.17 imply Theorem 2.11.

2.2.4 A similar argument to Gizatullin’s one

Let us consider the birational involution σn of Pn
C defined by

σn =
( n

∏
i=0
i�=0

zi :
n

∏
i=0
i�=1

zi : . . . :
n

∏
i=0
i�=n

zi

)
.

Definition 2.18. — A monomial map of Pn
C is a birational self-map of Pn

C of the form
(
α1za11

1 za12
2 . . . za1n

n ,α2za21
1 za22

2 . . . za2n
n , . . . ,αnzan1

1 zan2
2 . . . zann

n
)

in the affine chart z0 = 1 with (α1,α2, . . . ,αn) ∈ (C∗)n and
[
ai j

]
1≤i, j≤n ∈ GL(n,Z).
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Blanc and Heden prove that 〈σn, Aut(Pn
C)〉 �= Bir(Pn

C) for n odd:

Theorem 2.19 ([5]). — If n is odd, there are monomial maps of Pn
C which do not belong to

〈σn, Aut(Pn
C)〉.

The idea of the proof is the same as Gizatullin’s. They prove the following statement:

Proposition 2.20 ([5]). — Assume n odd. The jacobian determinant of any element of 〈σn, Aut(Pn
C)〉

is equal to αP2 for some α ∈ C∗ and some homogeneous polynomial P ∈ C[z0,z1, . . . ,zn].

Corollary 2.21. — Suppose n odd. The quadratic birational involution of Pn
C given by

(
z1z2 : z0z1 : z0z2 : . . . : z0zn

)

does not belong to 〈σn, Aut(Pn
C)〉.

Exercice 22. Let ψ ∈C[z0,z1, . . . ,zn]d be a homogeneous polynomial of degree d ∈N, and φ0, φ1,
. . ., φn ∈ C(z0,z1, . . . ,zn)e be homogeneous rational functions of degree e ∈ Z�{0}. Prove that

jac(ψφ0,ψφ1, . . . ,ψφn) =

(
1+

d
e

)
jac(φ0,φ1, . . . ,φn)ψn+1.

Exercice 23. Using Exercice 22 prove that jacσn = n(−1)n
n

∏
i=0

zn−1
i .

Exercice 24. Let φ = (φ0 : φ1 : . . . : φn) and ψ = (ψ0 : ψ1 : . . . : ψn) be two birational self-maps of
Pn
C. Set d1 = degφ, and d2 = degψ.

Assume that deg(φψ) = d1d2; then the chain rule states that

jac(φψ) = ψ∗(jacφ) jacψ

where ψ∗(jacφ) is obtained by replacing each zi with ψi in jacφ.
If deg(φψ) = d1d2 −m for m > 0 there exists a homogeneous polynomial Q of degree m that

divides the formal composition of φ and ψ. Prove that

jac(φψ) =
(

d1d2 −m
d1d2

)
ψ∗(jacφ) jacψ

Qn+1 .

Deduce from it the Proposition 2.20.

Exercice 25. Prove Corollary 2.21 : compute the jacobian determinant of
(
z1z2 : z0z1 : z0z2 : . . . : z0zn

)

and conclude with Proposition 2.20.
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Lemma 2.14. — For any irreducible hypersurface Y of Pn−1
C of degree d there exist a birational

self-map φY of Pn
C of degree d +1, and a hypersurface X of Pn

C such that

• X is birationally equivalent to Y ×P1
C,

• X is φY -exceptional.

In case n = 3 the previous statement says that: for any irreducible curve C in P2
C of degree �

there exists φC ∈ Bir(P3
C) of degree d +1, and a hypersurface X in P3

C such that

• X is birationally equivalent to C×P1
C,

• and X is φC-exceptional.

Consider now the particular case of smooth plane cubics: the set of these curves is a one-
parameter family so according to Lemma 2.13 one gets Theorem 2.11 for n = 3. More generally
one concludes as follows.

2.2.3 Stable equivalence

Definition 2.15. — Let Y , and Y ′ be two varieties; Y is m-stably equivalent to Y ′ if there exists a
birational map from Y ×Pm

C to Y ′ ×Pm
C.

Remark 2.16. — Be careful there exist complex projective varieties Y of dimension n ≥ 3 such
that Y is not rational but Y is stably equivalent to Pn

C.

Lemma 2.17. — Let Y and Y ′ be two smooth irreducible hypersurfaces of Pn−1
C of degree ≥ n+1.

If Y and Y ′ are m-stably equivalent, then Y and Y ′ are isomorphic.

Lemmas 2.13, 2.14, and 2.17 imply Theorem 2.11.

2.2.4 A similar argument to Gizatullin’s one

Let us consider the birational involution σn of Pn
C defined by

σn =
( n

∏
i=0
i�=0

zi :
n

∏
i=0
i�=1

zi : . . . :
n

∏
i=0
i�=n

zi

)
.

Definition 2.18. — A monomial map of Pn
C is a birational self-map of Pn

C of the form
(
α1za11

1 za12
2 . . . za1n

n ,α2za21
1 za22

2 . . . za2n
n , . . . ,αnzan1

1 zan2
2 . . . zann

n
)

in the affine chart z0 = 1 with (α1,α2, . . . ,αn) ∈ (C∗)n and
[
ai j

]
1≤i, j≤n ∈ GL(n,Z).
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Blanc and Heden prove that 〈σn, Aut(Pn
C)〉 �= Bir(Pn

C) for n odd:

Theorem 2.19 ([5]). — If n is odd, there are monomial maps of Pn
C which do not belong to

〈σn, Aut(Pn
C)〉.

The idea of the proof is the same as Gizatullin’s. They prove the following statement:

Proposition 2.20 ([5]). — Assume n odd. The jacobian determinant of any element of 〈σn, Aut(Pn
C)〉

is equal to αP2 for some α ∈ C∗ and some homogeneous polynomial P ∈ C[z0,z1, . . . ,zn].

Corollary 2.21. — Suppose n odd. The quadratic birational involution of Pn
C given by

(
z1z2 : z0z1 : z0z2 : . . . : z0zn

)

does not belong to 〈σn, Aut(Pn
C)〉.

Exercice 22. Let ψ ∈C[z0,z1, . . . ,zn]d be a homogeneous polynomial of degree d ∈N, and φ0, φ1,
. . ., φn ∈ C(z0,z1, . . . ,zn)e be homogeneous rational functions of degree e ∈ Z�{0}. Prove that

jac(ψφ0,ψφ1, . . . ,ψφn) =

(
1+

d
e

)
jac(φ0,φ1, . . . ,φn)ψn+1.

Exercice 23. Using Exercice 22 prove that jacσn = n(−1)n
n

∏
i=0

zn−1
i .

Exercice 24. Let φ = (φ0 : φ1 : . . . : φn) and ψ = (ψ0 : ψ1 : . . . : ψn) be two birational self-maps of
Pn
C. Set d1 = degφ, and d2 = degψ.

Assume that deg(φψ) = d1d2; then the chain rule states that

jac(φψ) = ψ∗(jacφ) jacψ

where ψ∗(jacφ) is obtained by replacing each zi with ψi in jacφ.
If deg(φψ) = d1d2 −m for m > 0 there exists a homogeneous polynomial Q of degree m that

divides the formal composition of φ and ψ. Prove that

jac(φψ) =
(

d1d2 −m
d1d2

)
ψ∗(jacφ) jacψ

Qn+1 .

Deduce from it the Proposition 2.20.

Exercice 25. Prove Corollary 2.21 : compute the jacobian determinant of
(
z1z2 : z0z1 : z0z2 : . . . : z0zn

)

and conclude with Proposition 2.20.
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Solution 15. — Let S be the linear system defined by φ. Consider two curves C and D of S .
According to Bezout theorem one has C ·D = d2. Blow up P2

C at p0, and denote by C′, resp. D′

the strict transform of C, resp. D; according to Lemma 1.7

C′ ·D′ = (π∗C−m0E) · (π∗D−m0E)

so
C′ ·D′ = π∗C ·π∗D−π∗C ·m0E −m0E ·π∗D+m0E ·m0E

that is
C′ ·D′ = π∗C ·π∗D−π∗C ·m0E −m0E ·π∗D−m2

0

hence
C′ ·D′ =C ·D−m2

0

and finally
d2 =C ·D =C′ ·D′+m2

0.

The points p1, p2, . . ., pk are still points of multiplicity m1, m2, . . ., mk. By induction one has

d2 = C̃ · D̃+
k

∑
j=0

m2
j

where C̃, resp. D̃ is the strict transform of C, resp. D after the blow up of p0, p1, . . ., pk. Moreover
the curves C̃ and D̃ intersect at only one point that does not belong to

{
p0, p1, . . . , pk

}
; hence

C̃ · D̃ = 1. Therefore

d2 = 1+
k

∑
j=0

m2
j .

Solution 16. — Consider a curve C in P2
C that belongs to the linear system defined by φ. Let

π : Blp0P2
C → P2

C be the blow-up of p0, and C′ be the strict transform of C. One has (Proposition
1.9)

KBlp0P
2
C
= π∗ KP2

C
+E

and so
KBlp0P

2
C
·C′ = π∗ KP2

C
·C+m0.

By induction one gets

KS ·C̃ = KP2
C
·C+

k

∑
j=0

m j
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where S = Blp0, p1, ..., pkP2
C, and C̃ is the strict transform of C. The curve C̃ is smooth so according

to Riemann-Roch theorem and adjunction formula one obtains

KS ·C̃ = 2g(C̃)−2−C̃2

where g(C) denotes the real genus of C, that is the topological genus of a desingularization of C.
So

KP2
C
·C+

k

∑
j=0

m j = 2g(C̃)−2−C̃2.

Since g(C̃) = 0 one has

KP2
C
·C+

k

∑
j=0

m j =−2−C̃2 (2.4)

But C̃2 =C2 −
k

∑
j=0

m2
j and KP2

C
=−3H thus

(2.4) ⇔ −3d +
k

∑
j=0

m j =−2−C2 +
k

∑
j=0

m2
j

⇔ −3d +
k

∑
j=0

m j =−2−d2 +
k

∑
j=0

m2
j

⇔ d2 −3d +2 =
k

∑
j=0

m j(m j −1)

⇔ (d −1)(d −2) =
k

∑
j=0

m j(m j −1)

Solution 17. The degree of elements of the linear system defined by φ is d, hence the multiplicity
of a point is bounded by d.

Solution 18. If an homogeneous polynomial P of degree d has a point of multiplicity d then
(P = 0) is not irreducible, it is the union of d lines.

Solution 19. According to Bezout’s theorem the line through p0 and p1 intersects any curve of the
linear system at d points counted with multiplicity. But the line through p0 and p1 intersects any
curve of the system at p0 with multiplicity m0 so m1 ≤ d−m0 = 2c. We thus have the inequalities

2c ≥ m1 ≥ m2 ≥ . . .≥ mn > c.
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Solution 15. — Let S be the linear system defined by φ. Consider two curves C and D of S .
According to Bezout theorem one has C ·D = d2. Blow up P2

C at p0, and denote by C′, resp. D′

the strict transform of C, resp. D; according to Lemma 1.7

C′ ·D′ = (π∗C−m0E) · (π∗D−m0E)

so
C′ ·D′ = π∗C ·π∗D−π∗C ·m0E −m0E ·π∗D+m0E ·m0E

that is
C′ ·D′ = π∗C ·π∗D−π∗C ·m0E −m0E ·π∗D−m2

0

hence
C′ ·D′ =C ·D−m2

0

and finally
d2 =C ·D =C′ ·D′+m2

0.

The points p1, p2, . . ., pk are still points of multiplicity m1, m2, . . ., mk. By induction one has

d2 = C̃ · D̃+
k

∑
j=0

m2
j

where C̃, resp. D̃ is the strict transform of C, resp. D after the blow up of p0, p1, . . ., pk. Moreover
the curves C̃ and D̃ intersect at only one point that does not belong to

{
p0, p1, . . . , pk

}
; hence

C̃ · D̃ = 1. Therefore

d2 = 1+
k

∑
j=0

m2
j .

Solution 16. — Consider a curve C in P2
C that belongs to the linear system defined by φ. Let

π : Blp0P2
C → P2

C be the blow-up of p0, and C′ be the strict transform of C. One has (Proposition
1.9)

KBlp0P
2
C
= π∗ KP2

C
+E

and so
KBlp0P

2
C
·C′ = π∗ KP2

C
·C+m0.

By induction one gets

KS ·C̃ = KP2
C
·C+

k

∑
j=0

m j
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where S = Blp0, p1, ..., pkP2
C, and C̃ is the strict transform of C. The curve C̃ is smooth so according

to Riemann-Roch theorem and adjunction formula one obtains

KS ·C̃ = 2g(C̃)−2−C̃2

where g(C) denotes the real genus of C, that is the topological genus of a desingularization of C.
So

KP2
C
·C+

k

∑
j=0

m j = 2g(C̃)−2−C̃2.

Since g(C̃) = 0 one has

KP2
C
·C+

k

∑
j=0

m j =−2−C̃2 (2.4)

But C̃2 =C2 −
k

∑
j=0

m2
j and KP2

C
=−3H thus

(2.4) ⇔ −3d +
k

∑
j=0

m j =−2−C2 +
k

∑
j=0

m2
j

⇔ −3d +
k

∑
j=0

m j =−2−d2 +
k

∑
j=0

m2
j

⇔ d2 −3d +2 =
k

∑
j=0

m j(m j −1)

⇔ (d −1)(d −2) =
k

∑
j=0

m j(m j −1)

Solution 17. The degree of elements of the linear system defined by φ is d, hence the multiplicity
of a point is bounded by d.

Solution 18. If an homogeneous polynomial P of degree d has a point of multiplicity d then
(P = 0) is not irreducible, it is the union of d lines.

Solution 19. According to Bezout’s theorem the line through p0 and p1 intersects any curve of the
linear system at d points counted with multiplicity. But the line through p0 and p1 intersects any
curve of the system at p0 with multiplicity m0 so m1 ≤ d−m0 = 2c. We thus have the inequalities

2c ≥ m1 ≥ m2 ≥ . . .≥ mn > c.
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Solution 20. One has: c(2.2)− (c−1)(2.1) gives on the one hand

c
k

∑
i=0

mi(mi −1)− (c−1)
k

∑
i=0

m2
i =

k

∑
i=0

mi(mi − c)

and on the other hand

c(d −1)(d −2)− (c−1)(d2 −1) = (d −1)(d −3c+1).

Hence
k

∑
i=0

mi(mi − c) = (d −1)(d −3c+1) (2.5)

Since 3c−1 ≥ 1
2 > 0 and mn+i − c < 0 for all i > 0 then

n

∑
i=0

mi(mi − c)≥
k

∑
i=0

mi(mi − c)

and according to 2.5
n

∑
i=0

mi(mi − c)≥ (d −1)(d −3c+1)

so
n

∑
i=0

mi(mi − c)> d(d −2c) = d(m0 − c). But

n

∑
i=0

mi(mi − c) = m0(m0 − c)+
n

∑
i=1

mi(mi − c)

therefore
n

∑
i=1

mi(mi − c)> d(m0 − c)−m0(m0 − c) = (d −m0)(m0 − c) = 2c(m0 − c).

Since 2c ≥ m1 ≥ m2 ≥ . . .≥ mn ≥ c one has

2c
n

∑
i=1

(mi − c)> 2c(m0 − c)

and as c > 0
n

∑
i=1

(mi − c)> m0 − c.

But m1 ≤ m0 thus n ≥ 2.
From m0 ≥ mi for all i one has

0 ≥
n

∑
i=0

mi(mi −m0) =
n

∑
i=0

m2
i −m0

n

∑
i=0

mi = (d −1)(d +1−3m0).

So d +1−3m0 ≤ 0, and m0 >
d
3 .
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Solution 21. The complexity of the system after composing with a general quadratic birational
map centered at p0, q, and r is

2c′ = d′ −m′
max = 2d −m0 −mq −mr −m′

max

= d −m0 +m′
0 −m′

max

= 2c+m′
0 −m′

max

where m′
max denotes the highest multiplicity of the base points of the new system. Therefore c′ ≤ c

and c = c′ if and only if m′
0 = m′

max.

Solution 22. See [5, Lemma 2.3]

Solution 23. [5, Corollary 2.4] Since σn =
(

ψ
z0

: ψ
z1

: . . . : ψ
zn

)
with ψ = ∏n−1

i=0 (zi)
n−1. It follows by

Exercice 22 that

jac(σn) =

(
1+

n+1
−1

)
jac

(
z−1

0 ,z−1
1 , . . . ,z−1

n
)

ψn+1 = n(−1)n
n

∏
i=0

(zi)
n−1.

Solution 24. [5, Proposition 2.6] The formula

jac(φψ) =
(

d1d2 −m
d1d2

)
ψ∗(jacφ) jacψ

Qn+1

directly follows from Exercice 22.

Since n is odd, we see that if the result is true for φ and ψ, then it is true for the composition
φψ. It remains to note that

• as we have seen jac(σn) = n(−1)n ∏n
i=0(zi)

n−1, that is jac(σn) is a square multiplied by a
constant when n is odd,

• if φ is an automorphism of Pn
C, thenjac(φ) belongs to C.

Solution 25. [5, Corollary 2.7] Since

jac
(
z1z2 : z0z1 : z0z2 : . . . : z0zn

)
=−2zn−1

0 z1z2

the result follows then from Proposition 2.20.
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Solution 20. One has: c(2.2)− (c−1)(2.1) gives on the one hand

c
k

∑
i=0

mi(mi −1)− (c−1)
k

∑
i=0

m2
i =

k

∑
i=0

mi(mi − c)

and on the other hand

c(d −1)(d −2)− (c−1)(d2 −1) = (d −1)(d −3c+1).

Hence
k

∑
i=0

mi(mi − c) = (d −1)(d −3c+1) (2.5)

Since 3c−1 ≥ 1
2 > 0 and mn+i − c < 0 for all i > 0 then

n

∑
i=0

mi(mi − c)≥
k

∑
i=0

mi(mi − c)

and according to 2.5
n

∑
i=0

mi(mi − c)≥ (d −1)(d −3c+1)

so
n

∑
i=0

mi(mi − c)> d(d −2c) = d(m0 − c). But

n

∑
i=0

mi(mi − c) = m0(m0 − c)+
n

∑
i=1

mi(mi − c)

therefore
n

∑
i=1

mi(mi − c)> d(m0 − c)−m0(m0 − c) = (d −m0)(m0 − c) = 2c(m0 − c).

Since 2c ≥ m1 ≥ m2 ≥ . . .≥ mn ≥ c one has

2c
n

∑
i=1

(mi − c)> 2c(m0 − c)

and as c > 0
n

∑
i=1

(mi − c)> m0 − c.

But m1 ≤ m0 thus n ≥ 2.
From m0 ≥ mi for all i one has

0 ≥
n

∑
i=0

mi(mi −m0) =
n

∑
i=0

m2
i −m0

n

∑
i=0

mi = (d −1)(d +1−3m0).

So d +1−3m0 ≤ 0, and m0 >
d
3 .
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Solution 21. The complexity of the system after composing with a general quadratic birational
map centered at p0, q, and r is

2c′ = d′ −m′
max = 2d −m0 −mq −mr −m′

max

= d −m0 +m′
0 −m′

max

= 2c+m′
0 −m′

max

where m′
max denotes the highest multiplicity of the base points of the new system. Therefore c′ ≤ c

and c = c′ if and only if m′
0 = m′

max.

Solution 22. See [5, Lemma 2.3]

Solution 23. [5, Corollary 2.4] Since σn =
(

ψ
z0

: ψ
z1

: . . . : ψ
zn

)
with ψ = ∏n−1

i=0 (zi)
n−1. It follows by

Exercice 22 that

jac(σn) =

(
1+

n+1
−1

)
jac

(
z−1

0 ,z−1
1 , . . . ,z−1

n
)

ψn+1 = n(−1)n
n

∏
i=0

(zi)
n−1.

Solution 24. [5, Proposition 2.6] The formula

jac(φψ) =
(

d1d2 −m
d1d2

)
ψ∗(jacφ) jacψ

Qn+1

directly follows from Exercice 22.

Since n is odd, we see that if the result is true for φ and ψ, then it is true for the composition
φψ. It remains to note that

• as we have seen jac(σn) = n(−1)n ∏n
i=0(zi)

n−1, that is jac(σn) is a square multiplied by a
constant when n is odd,

• if φ is an automorphism of Pn
C, thenjac(φ) belongs to C.

Solution 25. [5, Corollary 2.7] Since

jac
(
z1z2 : z0z1 : z0z2 : . . . : z0zn

)
=−2zn−1

0 z1z2

the result follows then from Proposition 2.20.
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3 Action of the Cremona group on the Picard-Manin space and ap-
plications

3.1 Picard-Manin space and Bubble space

Let S, Si be some complex projective surfaces. Any πi : Si → S birational morphism induces an
embedding

π∗ : NS(S)→ NS(Si)

of Néron-Severi groups. We say that π2 is above π1 if π−1
1 π2 is regular. Starting with two birational

morphisms one can always find a third one that covers the two first. Therefore the inductive limit
of all groups NS(Si) for all surfaces Si above S is well-defined. It is the Picard-Manin space ZS

of S. Structures invariant by the morphisms π∗
i go through the limit and so ZS is provided with

• an intersection form,

• a nef cone Z+
S = lim

→
NS+(Si),

• a canonical class which can be seen as a linear form ZS → Z.

Consider all surfaces Si above S that is all birational morphisms πi : Si → S. Take π1 : S1 →
S, π2 : S2 → S, and p1 ∈ S1, p2 ∈ S2. The point p1 is identified with p2 if π−1

1 π2 is a local
isomorphism that sends p2 onto p1. The Bubble space B(S) of S is the union of all points of all
surfaces above S modulo the equivalence relation induced by this identification.

If p ∈ B(S) is represented by a point p on a surface Si → S we denote by ep the divisor class
of the exceptional divisor of the blow-up of p. Then

{
ep · ep =−1
ep · eq = 0 if p �= q

Exercice 26. — Prove the previous formulas in case where p is a point of P2
C, S1 = BlpP2

C, q is a
point on Ep, and S2 = BlqS1.

Embed NS(S) as a subgroup of ZS. This finite dimensional lattice is orthogonal to ep for any
p ∈ B(S). Furthermore

ZS =
{

D+ ∑
p∈B(S)

apep |D ∈ NS(S), ap ∈ R
}
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note that ap = 0 except finitely many. The completed Picard-Manin space ZS of S is the L2-
completion of ZS, that is

ZS =
{

D+ ∑
p∈B(S)

apep |D ∈ NS(S), ap ∈ R, ∑a2
p < ∞

}
.

Furthermore the intersection form on NS(Si) induces an intersection form with signature (1,∞) on
ZS. Let Z+

S be the nef cone of ZS, and LZS =
{

d ∈ ZS |d ·d = 0
}

be the light cone of ZS.

3.2 Hyperbolic space and isometries

The hyperbolic space HS of S is then defined by

HS =
{

d ∈ Z+
S |d ·d = 1

}
.

Note that HS is an infinite dimensional analogue of the classical hyperbolic space Hn. The distance
on HS is defined by: for d, d′ ∈HS

cosh(dist(d,d′)) = d ·d′.

The geodesics are intersections of HS with planes. The projection HS → P(ZS) is one-to-one, the
boundary of its image is the projection of the cone of isotropic vectors of ZS. Hence

∂HS =
{
R+d |d ∈ Z+

S , d ·d = 0
}
.

If π : S′ → S is a birational morphism, we get an isometry π∗ (and not simply an embedding)
between HS and HS′ . This allows to define an action of Bir(S) on HS. Let φ : S → S be a birational
map; there exists S′ a surface and π1 : S′ → S, π2 : S′ → S two birational morphisms such that
φ = π2π−1

1 (see for example [2]). One can define the isometry φ• of HS by

φ• = (π∗
2)

−1π∗
1.

The isometries of HS are classified in three types ([6, 23]). The translation length of an
isometry φ• of HS is defined by

L(φ•) = inf
{

dist(p,φ•(p)) | p ∈HS
}
.

If the infimum is a minimum, then

• either it is equal to 0 and φ• has a fixed point in HS, φ• is thus elliptic,
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3 Action of the Cremona group on the Picard-Manin space and ap-
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Let S, Si be some complex projective surfaces. Any πi : Si → S birational morphism induces an
embedding

π∗ : NS(S)→ NS(Si)

of Néron-Severi groups. We say that π2 is above π1 if π−1
1 π2 is regular. Starting with two birational

morphisms one can always find a third one that covers the two first. Therefore the inductive limit
of all groups NS(Si) for all surfaces Si above S is well-defined. It is the Picard-Manin space ZS

of S. Structures invariant by the morphisms π∗
i go through the limit and so ZS is provided with

• an intersection form,

• a nef cone Z+
S = lim

→
NS+(Si),

• a canonical class which can be seen as a linear form ZS → Z.

Consider all surfaces Si above S that is all birational morphisms πi : Si → S. Take π1 : S1 →
S, π2 : S2 → S, and p1 ∈ S1, p2 ∈ S2. The point p1 is identified with p2 if π−1

1 π2 is a local
isomorphism that sends p2 onto p1. The Bubble space B(S) of S is the union of all points of all
surfaces above S modulo the equivalence relation induced by this identification.

If p ∈ B(S) is represented by a point p on a surface Si → S we denote by ep the divisor class
of the exceptional divisor of the blow-up of p. Then

{
ep · ep =−1
ep · eq = 0 if p �= q

Exercice 26. — Prove the previous formulas in case where p is a point of P2
C, S1 = BlpP2

C, q is a
point on Ep, and S2 = BlqS1.

Embed NS(S) as a subgroup of ZS. This finite dimensional lattice is orthogonal to ep for any
p ∈ B(S). Furthermore
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{
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apep |D ∈ NS(S), ap ∈ R
}
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note that ap = 0 except finitely many. The completed Picard-Manin space ZS of S is the L2-
completion of ZS, that is

ZS =
{

D+ ∑
p∈B(S)

apep |D ∈ NS(S), ap ∈ R, ∑a2
p < ∞

}
.

Furthermore the intersection form on NS(Si) induces an intersection form with signature (1,∞) on
ZS. Let Z+

S be the nef cone of ZS, and LZS =
{

d ∈ ZS |d ·d = 0
}

be the light cone of ZS.

3.2 Hyperbolic space and isometries

The hyperbolic space HS of S is then defined by

HS =
{

d ∈ Z+
S |d ·d = 1

}
.

Note that HS is an infinite dimensional analogue of the classical hyperbolic space Hn. The distance
on HS is defined by: for d, d′ ∈HS

cosh(dist(d,d′)) = d ·d′.

The geodesics are intersections of HS with planes. The projection HS → P(ZS) is one-to-one, the
boundary of its image is the projection of the cone of isotropic vectors of ZS. Hence

∂HS =
{
R+d |d ∈ Z+

S , d ·d = 0
}
.

If π : S′ → S is a birational morphism, we get an isometry π∗ (and not simply an embedding)
between HS and HS′ . This allows to define an action of Bir(S) on HS. Let φ : S → S be a birational
map; there exists S′ a surface and π1 : S′ → S, π2 : S′ → S two birational morphisms such that
φ = π2π−1

1 (see for example [2]). One can define the isometry φ• of HS by

φ• = (π∗
2)

−1π∗
1.

The isometries of HS are classified in three types ([6, 23]). The translation length of an
isometry φ• of HS is defined by

L(φ•) = inf
{

dist(p,φ•(p)) | p ∈HS
}
.

If the infimum is a minimum, then

• either it is equal to 0 and φ• has a fixed point in HS, φ• is thus elliptic,
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• or it is positive and φ• is hyperbolic. Hence the set of points p ∈HS such that dist(p,φ•(p))
is equal to L(φ•) is a geodesic line Ax(φ•) ⊂ HS. Its boundary points are represented by
isotropic vectors ω(φ•) and α(φ•) in ZS such that

φ•(ω(φ•)) = λ(φ)ω(φ•) φ•(α(φ•)) =
1

λ(φ)
α(φ•).

The axis of φ• is the intersection of HS with the plane containing ω(φ•) and α(φ•). Forall
p ∈HS one has

lim
k→+∞

φ−k
• (p)
λ(φ)

= α(φ•) lim
k→+∞

φk
•(p)

λ(φ)
= ω(φ•).

When the infimum is not realized, L(φ•) = 0 and φ• is parabolic: φ• fixes a unique line in
LZS; this line is fixed pointwise, and all orbits φn

•(p) in HS accumulate to the corresponding
boundary point when n goes to ±∞.

Exercice 27. — Let φ• be a hyperbolic isometry; it acts as a translation along Ax(φ•). Let us
prove that this length of translation is L(φ•) = logλ(φ).

One can normalize α(φ•) and ω(φ•) such that α(φ•) = ω(φ•) =
1
2 ; one has

Ax(φ•) =
{

uα(φ•)+ vω(φ•) |uv = 1
}
.

Set p=α(φ•)+ω(φ•); the point p lies on Ax(φ•). Compute 2cosh(dist(p,φ•(p))), and 2cosh(L(φ•)).
Conclude.

There is a strong relationship between classification of birational maps of P2
C and the classifi-

cation of isometries of HP2
C
:

Theorem 3.1 ([7]). — Let φ be a birational map of the complex projective plane. Then

• φ is a elliptic map if and only if φ• is an elliptic isometry;

• φ is a twist if and only if φ• is a parabolic isometry;

• φ is a hyperbolic map if and only if φ• is a hyperbolic isometry.

Remark 3.2. — Let φ be an element of Bir(P2
C), and let h be the class of a line viewed as a point

in HP2
C
. Then

φ•(h) = (degφ)h−∑apep
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where ap is the multiplicity of the linear system φ∗|O(1)| at the point p. Since h does not intersect
any of the ep one gets

cosh(dist(h,φ•(h))) = h ·φ•(h) = degφ

this establishes a link between degφn and dist
(
h,φn

•(h)
)
.

Exercice 28. — Take a generic element φ in Bir2(P2
C). Then

{
Indφ = {p0, p1, p2}, Excφ = {Lp0 p1 ,Lp1 p2 ,Lp0 p2},
Indφ−1 = {q0, q1, q2}, Excφ−1 = {Lq0q1 ,Lq1q2 ,Lq0q2}

Let h be the class of a line in P2
C. Determine φ•(h).

Assume φ is an isomorphism on a neighborhood of p, and φ(p) = q; determine φ•(ep).
Suppose Lq1q2 is blown down onto p0 by φ−1 ; determine φ•(ep0).

Exercice 29. — Any set {p0 = (1 : 0 : 0), p1, p2} of three distinct and non colinear points is the
indeterminacy set of a Jonquières map of degree 2. Any set {p0 = (1 : 0 : 0), p1, p2, p3} of four
distinct points such that

• no three of them are on a line through p0, and

• there is no line containing p1, p2 and p3

is the indeterminacy set of a Jonquières map of degree 3. More generally on the complement of a
strict Zariski closed subset of Jd the points p0, p1, . . ., p2d−2 form a set of 2d − 1 distinct points
in the complex projective plane. Hence the base points of a generic element φ of Aut(P2

C)× Jd ×
Aut(P2

C) are p0 = (1 : 0 : 0) and 2d −1 distinct points p1, p2, . . ., p2d−2 of P2
C.

Determine φ•(h).

3.3 Some applications

3.3.1 Tits alternative

Linear groups satisfy Tits alternative. Recall that a group G is solvable if there exists an integer k
such that G(k) = {id} where G(0) = G and for k ≥ 1

G(k) = [G(k−1),G(k−1)] = 〈aba−1b−1 |a, b ∈ G(k−1)〉.

Theorem 3.3 ([35]). Let k be a field of characteristic 0, and Γ be a finitely generated subgroup of
GL(n,k). Then
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• or it is positive and φ• is hyperbolic. Hence the set of points p ∈HS such that dist(p,φ•(p))
is equal to L(φ•) is a geodesic line Ax(φ•) ⊂ HS. Its boundary points are represented by
isotropic vectors ω(φ•) and α(φ•) in ZS such that

φ•(ω(φ•)) = λ(φ)ω(φ•) φ•(α(φ•)) =
1

λ(φ)
α(φ•).

The axis of φ• is the intersection of HS with the plane containing ω(φ•) and α(φ•). Forall
p ∈HS one has

lim
k→+∞

φ−k
• (p)
λ(φ)

= α(φ•) lim
k→+∞

φk
•(p)

λ(φ)
= ω(φ•).

When the infimum is not realized, L(φ•) = 0 and φ• is parabolic: φ• fixes a unique line in
LZS; this line is fixed pointwise, and all orbits φn

•(p) in HS accumulate to the corresponding
boundary point when n goes to ±∞.

Exercice 27. — Let φ• be a hyperbolic isometry; it acts as a translation along Ax(φ•). Let us
prove that this length of translation is L(φ•) = logλ(φ).

One can normalize α(φ•) and ω(φ•) such that α(φ•) = ω(φ•) =
1
2 ; one has

Ax(φ•) =
{

uα(φ•)+ vω(φ•) |uv = 1
}
.

Set p=α(φ•)+ω(φ•); the point p lies on Ax(φ•). Compute 2cosh(dist(p,φ•(p))), and 2cosh(L(φ•)).
Conclude.

There is a strong relationship between classification of birational maps of P2
C and the classifi-

cation of isometries of HP2
C
:

Theorem 3.1 ([7]). — Let φ be a birational map of the complex projective plane. Then

• φ is a elliptic map if and only if φ• is an elliptic isometry;

• φ is a twist if and only if φ• is a parabolic isometry;

• φ is a hyperbolic map if and only if φ• is a hyperbolic isometry.

Remark 3.2. — Let φ be an element of Bir(P2
C), and let h be the class of a line viewed as a point

in HP2
C
. Then

φ•(h) = (degφ)h−∑apep
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where ap is the multiplicity of the linear system φ∗|O(1)| at the point p. Since h does not intersect
any of the ep one gets

cosh(dist(h,φ•(h))) = h ·φ•(h) = degφ

this establishes a link between degφn and dist
(
h,φn

•(h)
)
.

Exercice 28. — Take a generic element φ in Bir2(P2
C). Then

{
Indφ = {p0, p1, p2}, Excφ = {Lp0 p1 ,Lp1 p2 ,Lp0 p2},
Indφ−1 = {q0, q1, q2}, Excφ−1 = {Lq0q1 ,Lq1q2 ,Lq0q2}

Let h be the class of a line in P2
C. Determine φ•(h).

Assume φ is an isomorphism on a neighborhood of p, and φ(p) = q; determine φ•(ep).
Suppose Lq1q2 is blown down onto p0 by φ−1 ; determine φ•(ep0).

Exercice 29. — Any set {p0 = (1 : 0 : 0), p1, p2} of three distinct and non colinear points is the
indeterminacy set of a Jonquières map of degree 2. Any set {p0 = (1 : 0 : 0), p1, p2, p3} of four
distinct points such that

• no three of them are on a line through p0, and

• there is no line containing p1, p2 and p3

is the indeterminacy set of a Jonquières map of degree 3. More generally on the complement of a
strict Zariski closed subset of Jd the points p0, p1, . . ., p2d−2 form a set of 2d − 1 distinct points
in the complex projective plane. Hence the base points of a generic element φ of Aut(P2

C)× Jd ×
Aut(P2

C) are p0 = (1 : 0 : 0) and 2d −1 distinct points p1, p2, . . ., p2d−2 of P2
C.

Determine φ•(h).

3.3 Some applications

3.3.1 Tits alternative

Linear groups satisfy Tits alternative. Recall that a group G is solvable if there exists an integer k
such that G(k) = {id} where G(0) = G and for k ≥ 1

G(k) = [G(k−1),G(k−1)] = 〈aba−1b−1 |a, b ∈ G(k−1)〉.

Theorem 3.3 ([35]). Let k be a field of characteristic 0, and Γ be a finitely generated subgroup of
GL(n,k). Then
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• either Γ contains a non abelian, free group;

• or Γ contains a solvable subgroup of finite index.

The group of diffeomorphisms of a real manifold of dimension ≥ 1 does not satisfy Tits al-
ternative ([22]). The group of polynomial automorphisms of C2 satisfies Tits alternative ([29]);
to prove it Lamy uses the structure of amalgamated product of Aut(C2) that implies that Aut(C2)

acts on a tree ([34]). Using the action of Bir(P2
C) on ZP2

C
Cantat studied the finitely generated

subgroups of Bir(P2
C) and establishes the following statement

Theorem 3.4 ([7]). The Cremona group Bir(P2
C) satisfies Tits alternative.

3.3.2 Simplicity

Let us recall that a group is simple if it has no non trivial, proper and normal subgroup. The
normal subgroup of G generated by f ∈ G is

〈h f h−1 |h ∈ G〉.

Remark that Aut(C2) is not simple: let Ψ be the morphism defined by

Aut(C2)→ C∗ φ �→ det jacφ

its kernel is a proper normal subgroup of Aut(C2). Danilov has established that kerΨ is not simple
([13]); more precisely using [33] he proved that the normal subgroup generated by (ea)13 where

a = (y,−x) e = (x,y+3x5 −5x4)

is a strict subgroup of
{

φ ∈ Aut(C2) |Ψ(φ) = 1
}

. More recently Furter and Lamy gave a more
precise statement ([21]).

What about the Cremona group ? A birational map φ is tight if

• φ• is hyperbolic;

• there exists a positive number ε such that: if ψ is a birational map, and if ψ•(Ax(φ•)) con-
tains two points at distance ε which are at distance at most 1 from Ax(φ•) then ψ•(Ax(φ•))=

Ax(φ•);

• if ψ is a birational map and ψ•(Ax(φ•)) = Ax(φ•), then ψφψ−1 = φ±1.
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Using the action of Bir(P2
C) on ZP2

C
Cantat and Lamy proved that:

Theorem 3.5 ([8]). Let φ be an element of Bir(P2
C). If φ is tight, then φk generates a non trivial,

strict and normal subgroup of Bir(P2
C) for some positive integer k.

As a consequence:

Corollary 3.6 ([8]). The Cremona group Bir(P2
C) contains an uncountable number of strict nor-

mal subgroups.
In particular Bir(P2

C) is not simple.

3.3.3 Homomorphisms from lattices into the Cremona group

Using the embedding of Bir(P2
C) into the Picard-Manin space, Cantat proved the following result:

Theorem 3.7 ([7]). Any homomorphism with infinite image from a discrete Kazhdan group into
Bir(P2

C) is conjugate to a homomorphism into PGL(3,C).

In particular, this result applies to any lattice Γ in a connected simple Lie group with prop-
erty (T)3 but left open the problem of classifying homomorphisms from lattices in the groups
SO(n,1) and SU(n,1) into Bir(P2

C). There exist, for some values of n, injective homomorphisms
from lattices in SO(n,1) to the Cremona group ([8, 19]). Delzant and Py focus on the case
SU(n,1):

Theorem 3.8 ([15]). Let Γ be a cocompact lattice in the group SU(1,n) with n ≥ 2. If ρ : Γ →
Bir(P2

C) is an injective homomorphism, then one of the following two possibilities holds

• the group ρ(Γ) fixes a point in the Picard-Manin space;

• the group ρ(Γ) fixes a unique point in the boundary of the Picard-Manin space.

3.3.4 Solvable subgroups

The study of solvable groups started a long time ago, and any linear solvable subgroup is up to
finite index triangularizable (Lie-Kolchin theorem, [28, Theorem 21.1.5]). The assumption "up to
finite index" is essential: for instance the subgroup of PGL(2,C) generated by the matrices

[
1 0
1 −1

] [
−1 1
0 1

]

is isomorphic to S3 so is solvable but is not triangularizable.
3Informally, a locally compact topological group G has property (T) if it satisfies the following property: if G acts

unitarily on a Hilbert space and has "almost invariant vectors", then it has a nonzero invariant vector.
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• either Γ contains a non abelian, free group;

• or Γ contains a solvable subgroup of finite index.

The group of diffeomorphisms of a real manifold of dimension ≥ 1 does not satisfy Tits al-
ternative ([22]). The group of polynomial automorphisms of C2 satisfies Tits alternative ([29]);
to prove it Lamy uses the structure of amalgamated product of Aut(C2) that implies that Aut(C2)

acts on a tree ([34]). Using the action of Bir(P2
C) on ZP2

C
Cantat studied the finitely generated

subgroups of Bir(P2
C) and establishes the following statement

Theorem 3.4 ([7]). The Cremona group Bir(P2
C) satisfies Tits alternative.

3.3.2 Simplicity

Let us recall that a group is simple if it has no non trivial, proper and normal subgroup. The
normal subgroup of G generated by f ∈ G is

〈h f h−1 |h ∈ G〉.

Remark that Aut(C2) is not simple: let Ψ be the morphism defined by

Aut(C2)→ C∗ φ �→ det jacφ

its kernel is a proper normal subgroup of Aut(C2). Danilov has established that kerΨ is not simple
([13]); more precisely using [33] he proved that the normal subgroup generated by (ea)13 where

a = (y,−x) e = (x,y+3x5 −5x4)

is a strict subgroup of
{

φ ∈ Aut(C2) |Ψ(φ) = 1
}

. More recently Furter and Lamy gave a more
precise statement ([21]).

What about the Cremona group ? A birational map φ is tight if

• φ• is hyperbolic;

• there exists a positive number ε such that: if ψ is a birational map, and if ψ•(Ax(φ•)) con-
tains two points at distance ε which are at distance at most 1 from Ax(φ•) then ψ•(Ax(φ•))=

Ax(φ•);

• if ψ is a birational map and ψ•(Ax(φ•)) = Ax(φ•), then ψφψ−1 = φ±1.
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Using the action of Bir(P2
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Theorem 3.5 ([8]). Let φ be an element of Bir(P2
C). If φ is tight, then φk generates a non trivial,

strict and normal subgroup of Bir(P2
C) for some positive integer k.

As a consequence:

Corollary 3.6 ([8]). The Cremona group Bir(P2
C) contains an uncountable number of strict nor-

mal subgroups.
In particular Bir(P2

C) is not simple.

3.3.3 Homomorphisms from lattices into the Cremona group

Using the embedding of Bir(P2
C) into the Picard-Manin space, Cantat proved the following result:

Theorem 3.7 ([7]). Any homomorphism with infinite image from a discrete Kazhdan group into
Bir(P2

C) is conjugate to a homomorphism into PGL(3,C).

In particular, this result applies to any lattice Γ in a connected simple Lie group with prop-
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SO(n,1) and SU(n,1) into Bir(P2

C). There exist, for some values of n, injective homomorphisms
from lattices in SO(n,1) to the Cremona group ([8, 19]). Delzant and Py focus on the case
SU(n,1):

Theorem 3.8 ([15]). Let Γ be a cocompact lattice in the group SU(1,n) with n ≥ 2. If ρ : Γ →
Bir(P2

C) is an injective homomorphism, then one of the following two possibilities holds

• the group ρ(Γ) fixes a point in the Picard-Manin space;

• the group ρ(Γ) fixes a unique point in the boundary of the Picard-Manin space.

3.3.4 Solvable subgroups

The study of solvable groups started a long time ago, and any linear solvable subgroup is up to
finite index triangularizable (Lie-Kolchin theorem, [28, Theorem 21.1.5]). The assumption "up to
finite index" is essential: for instance the subgroup of PGL(2,C) generated by the matrices

[
1 0
1 −1

] [
−1 1
0 1

]

is isomorphic to S3 so is solvable but is not triangularizable.
3Informally, a locally compact topological group G has property (T) if it satisfies the following property: if G acts

unitarily on a Hilbert space and has "almost invariant vectors", then it has a nonzero invariant vector.

VIII ESCUELA DOCTORAL INTERCONTINENTAL DE MATEMÁTICAS PUCP - UVA 177

187

About the Cremona group / Julie Déserti



J. DÉSERTI

Theorem 3.9 ([16]). Let G be an infinite, solvable, non virtually abelian subgroup of Bir(P2
C).

Then, up to finite index, one of the following holds

1. any element of G is either of finite order, or conjugate to an automorphism of P2
C;

2. G preserves a unique fibration that is rational, in particular G is, up to conjugacy, a sub-
group of PGL(2,C(y)) � PGL(2,C);

3. G preserves a unique fibration that is elliptic;

4. G is, up to birational conjugacy, a subgroup of
{
(xpyq,xrys), (αx,βy) |α, β ∈ C∗}

where M =

[
p q
r s

]
denotes an element of GL(2,Z) with spectral radius > 1. The group

G preserves the two holomorphic foliations defined respectively by the 1-forms

α1 xdy+β1 ydx α2 xdy+β2 ydx

where (α1,β1) and (α2,β2) denote the eigenvectors of tM.

Furthermore if G is uncountable, case 3. does not hold.

Examples 3.10. • Denote by S3 the group generated by the matrices
[

1 0
1 −1

] [
−1 1
0 1

]

As we recall before S3 � S3. Consider now the subgroup G of Bir(P2
C) whose elements

are the monomial maps (xpyq,xrys) with

[
p q
r s

]
∈ S3. Then any element of G has finite

order, and G is solvable; it gives an example of case 1.

• The centralizer of a birational map of P2
C that preserves a unique fibration that is rational is

virtually solvable ([10, Corollary C]); this example falls in case 2 (we will give some details
in Example 3.17).

• In [12, Proposition 2.2] Cornulier proved that the group

〈(x+1,y), (x,y+1), (x,xy)〉

is solvable of length 3, and is not linear over any field; this example falls in case 2. The
invariant fibration is given by x = cst.
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Exercice 30. Give a subgroup of Aut(P2
C) that illustrates case 1.

Exercice 31. Give a subgroup of Aut(C2) that illustrates case 1.

Remark 3.11. In case 1. if there exists an integer d such that degφ ≤ d for any φ in G, then there
exists a birational map ψ : M ��� P2

C such that ψ−1Gψ is a solvable subgroup of Aut(M) (see the
end of the section for more details). But there is some solvable subgroups G with only elliptic
elements that do not satisfy this property: the group

E =
{
(αx+P(y),βy+ γ) |α, β ∈ C∗, γ ∈ C, P ∈ C[y]

}
⊂ Aut(C2).

We will prove Theorem 3.9: we first assume that our solvable, infinite and non virtually
abelian, subgroup G contains a hyperbolic map, then that it contains a twist and no hyperbolic
map, and finally that all elements of G are elliptic.

A. Solvable groups of birational maps containing a hyperbolic map
Let us recall the following criterion (for its proof see for example [14]) used on many occasions

by Klein, and also by Tits ([35]):

Lemma 3.12 (Ping-Pong Lemma). Let H be a group acting on a set X, let Γ1, Γ2 be two subgroups
of H, and let Γ be the subgroup generated by Γ1 and Γ2. Assume that Γ1 contains at least three
elements, and Γ2 at least two elements. Suppose that there exist two non-empty subsets X1, X2 of
X such that X2 �⊂ X1, and for any γ ∈ Γ1 �{id} and any γ ′ ∈ Γ2 �{id}

γ(X2)⊂ X1 γ ′(X1)⊂ X2.

Then Γ is isomorphic to the free product Γ1 ∗Γ2.

The Ping-Pong argument allows us to prove the following:

Lemma 3.13 ([16]). A solvable, non abelian, subgroup of Bir(P2
C) cannot contain two hyperbolic

maps φ and ψ such that
{

ω(φ•), α(φ•)
}
�=
{

ω(ψ•), α(ψ•)
}

.

Proof. Assume by contradiction that
{

ω(φ•), α(φ•)
}
�=

{
ω(ψ•), α(ψ•)

}
. Then the Ping-Pong

argument implies that there exist two integers n and m such that ψn and φm generate a subgroup of
G isomorphic to the free group F2 (see [7]). But 〈φ, ψ〉 is a solvable group: contradiction.

Let G be an infinite solvable, non virtually abelian, subgroup of Bir(P2
C). Assume that G

contains a hyperbolic map φ. Let α(φ•) and ω(φ•) be the two fixed points of φ• on ∂HP2
C
, and

Ax(φ•) be the geodesic passing through these two points. As G is solvable there exists a subgroup
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Theorem 3.9 ([16]). Let G be an infinite, solvable, non virtually abelian subgroup of Bir(P2
C).

Then, up to finite index, one of the following holds

1. any element of G is either of finite order, or conjugate to an automorphism of P2
C;

2. G preserves a unique fibration that is rational, in particular G is, up to conjugacy, a sub-
group of PGL(2,C(y)) � PGL(2,C);

3. G preserves a unique fibration that is elliptic;

4. G is, up to birational conjugacy, a subgroup of
{
(xpyq,xrys), (αx,βy) |α, β ∈ C∗}

where M =

[
p q
r s

]
denotes an element of GL(2,Z) with spectral radius > 1. The group

G preserves the two holomorphic foliations defined respectively by the 1-forms

α1 xdy+β1 ydx α2 xdy+β2 ydx

where (α1,β1) and (α2,β2) denote the eigenvectors of tM.

Furthermore if G is uncountable, case 3. does not hold.

Examples 3.10. • Denote by S3 the group generated by the matrices
[

1 0
1 −1

] [
−1 1
0 1

]

As we recall before S3 � S3. Consider now the subgroup G of Bir(P2
C) whose elements

are the monomial maps (xpyq,xrys) with

[
p q
r s

]
∈ S3. Then any element of G has finite

order, and G is solvable; it gives an example of case 1.

• The centralizer of a birational map of P2
C that preserves a unique fibration that is rational is

virtually solvable ([10, Corollary C]); this example falls in case 2 (we will give some details
in Example 3.17).

• In [12, Proposition 2.2] Cornulier proved that the group

〈(x+1,y), (x,y+1), (x,xy)〉

is solvable of length 3, and is not linear over any field; this example falls in case 2. The
invariant fibration is given by x = cst.
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Exercice 30. Give a subgroup of Aut(P2
C) that illustrates case 1.

Exercice 31. Give a subgroup of Aut(C2) that illustrates case 1.

Remark 3.11. In case 1. if there exists an integer d such that degφ ≤ d for any φ in G, then there
exists a birational map ψ : M ��� P2

C such that ψ−1Gψ is a solvable subgroup of Aut(M) (see the
end of the section for more details). But there is some solvable subgroups G with only elliptic
elements that do not satisfy this property: the group

E =
{
(αx+P(y),βy+ γ) |α, β ∈ C∗, γ ∈ C, P ∈ C[y]

}
⊂ Aut(C2).

We will prove Theorem 3.9: we first assume that our solvable, infinite and non virtually
abelian, subgroup G contains a hyperbolic map, then that it contains a twist and no hyperbolic
map, and finally that all elements of G are elliptic.

A. Solvable groups of birational maps containing a hyperbolic map
Let us recall the following criterion (for its proof see for example [14]) used on many occasions

by Klein, and also by Tits ([35]):

Lemma 3.12 (Ping-Pong Lemma). Let H be a group acting on a set X, let Γ1, Γ2 be two subgroups
of H, and let Γ be the subgroup generated by Γ1 and Γ2. Assume that Γ1 contains at least three
elements, and Γ2 at least two elements. Suppose that there exist two non-empty subsets X1, X2 of
X such that X2 �⊂ X1, and for any γ ∈ Γ1 �{id} and any γ ′ ∈ Γ2 �{id}

γ(X2)⊂ X1 γ ′(X1)⊂ X2.

Then Γ is isomorphic to the free product Γ1 ∗Γ2.

The Ping-Pong argument allows us to prove the following:

Lemma 3.13 ([16]). A solvable, non abelian, subgroup of Bir(P2
C) cannot contain two hyperbolic

maps φ and ψ such that
{

ω(φ•), α(φ•)
}
�=
{

ω(ψ•), α(ψ•)
}

.

Proof. Assume by contradiction that
{

ω(φ•), α(φ•)
}
�=

{
ω(ψ•), α(ψ•)

}
. Then the Ping-Pong

argument implies that there exist two integers n and m such that ψn and φm generate a subgroup of
G isomorphic to the free group F2 (see [7]). But 〈φ, ψ〉 is a solvable group: contradiction.

Let G be an infinite solvable, non virtually abelian, subgroup of Bir(P2
C). Assume that G

contains a hyperbolic map φ. Let α(φ•) and ω(φ•) be the two fixed points of φ• on ∂HP2
C
, and

Ax(φ•) be the geodesic passing through these two points. As G is solvable there exists a subgroup

VIII ESCUELA DOCTORAL INTERCONTINENTAL DE MATEMÁTICAS PUCP - UVA 179

189

About the Cremona group / Julie Déserti



J. DÉSERTI

of G of index 2 that preserves α(φ•), ω(φ•), and Ax(φ•) (see [7, Theorem 6.4]); let us still denote
by G this subgroup. One thus has a morphism κ : G → R∗

+ such that

ψ•(�) = κ(ψ)�

for any � in ZP2
C

lying on Ax(φ•).

Gap property:

If φ ∈ Bir(P2
C) is a hyperbolic map, then λ(φ) is an algebraic integer with all Galois conjugates

in the unit disk, that is a Salem number, or a Pisot number. The smallest known number is the
Lehmer number λL � 1,176 which is a root of

X10 +X9 −X7 −X6 −X5 −X4 −X3 +X +1.

Blanc and Cantat prove in [3, Corollary 2.7] that there is a gap in the dynamical spectrum Λ ={
λ(φ) |φ ∈ Bir(P2

C)}: there is no dynamical degree in ]1,λL[.

The gap property implies that in fact κ : ψ → κ(ψ) such that ψ•(�) = κ(ψ)� for any � in ZP2
C

lying on Ax(φ•) is a morphism from G to Z. Furthermore kerκ is an infinite subgroup that contains
only elliptic maps. Indeed it is clear that the set of elliptic elements of G coincides with kerα; and
[G,G]⊂ kerα so if kerα is finite, G is abelian up to finite index which is impossible.

Elliptic subgroups of the Cremona group with a large normalizer:

Consider in P2
C the complement of the union of the three lines {x = 0}, {y = 0} and {z =

0}. Denote by U this open set isomorphic to C∗ ×C∗. One has an action of C∗ ×C∗ on U by
translation. Furthermore GL(2,Z) acts on U by monomial maps

[
p q
r s

]
�→

(
(x,y) �→ (xpyq,xrys)

)

One thus has an injective morphism from (C∗ ×C∗)�GL(2,Z) into Bir(P2
C). Let Gtoric be its

image.

One can now apply [15, Theorem 4] that says that if there exists a short exact sequence

1 −→ A −→ N −→ B −→ 1

where N ⊂ Bir(P2
C) contains at least one hyperbolic element, and A ⊂ Bir(P2

C) is an infinite and
that fixes a point in HP2

C
, then N is up to conjugacy a subgroup of Gtoric. Hence up to birational

conjugacy G ⊂ Gtoric.

One can now state:
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Proposition 3.14 ([16]). Let G be an infinite solvable, non virtually abelian, subgroup of Bir(P2
C).

If G contains a hyperbolic birational map, then G is, up to conjugacy and finite index, a subgroup
of

〈(xpyq,xrys), (αx,βy) |α, β ∈ C∗〉

where

[
p q
r s

]
denotes an element of GL(2,Z) with spectral radius > 1.

B. Solvable groups with a twist
Consider a solvable, non abelian, subgroup G of Bir(P2

C). Let us assume that G contains a
twist φ; the map φ preserves a unique fibration F that is rational or elliptic. Let us prove that any
element of G preserves F . Denote by α(φ•) ∈ ∂HP2

C
the fixed point of φ•. Take one element in

LZP2
C

still denoted α(φ•) that represents α(φ•). Take ϕ ∈ G such that ϕ(α(φ•)) �= α(φ•). Then
ψ = ϕφϕ−1 is parabolic and fixes the unique element α(ψ•) of LZP2

C
proportional to ϕ(α(φ•)).

Take ε > 0 such that U(α(φ•),ε)∩U(α(ψ•),ε) = /0 where

U(α,ε) =
{
� ∈ LZP2

C
|α · � < ε

}
.

Since ψ• is parabolic, then for n large enough the inclusion

ψn
•
(
U(α(φ•),ε)

)
⊂ U(α(ψ•),ε)

holds. For m sufficiently large

φm
• ψn

•
(
U(α(φ•),ε)

)
⊂
(
U(α(φ•),ε/2)

)
�
(
U(α(φ•),ε)

)
.

Hence φm
• ψn

• is hyperbolic. You can by this way build two hyperbolic maps whose sets of fixed
points are distinct: this gives a contradiction with Lemma 3.13. So for any ϕ ∈ G one has :
α(φ•) = α(ϕ•); one can thus state the following result.

Proposition 3.15 ([16]). Let G be a solvable, non abelian, subgroup of Bir(P2
C) that contains a

twist φ. Then

• if φ is a Jonquières twist, then G preserves a rational fibration, that is up to birational
conjugacy G is a subgroup of PGL(2,C(y))�PGL(2,C),

• if φ is a Halphen twist, then G preserves an elliptic fibration.

If G is uncountable, then φ is a Jonquières twist.

Remark 3.16. Both cases are mutually exclusive.
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of G of index 2 that preserves α(φ•), ω(φ•), and Ax(φ•) (see [7, Theorem 6.4]); let us still denote
by G this subgroup. One thus has a morphism κ : G → R∗

+ such that

ψ•(�) = κ(ψ)�

for any � in ZP2
C

lying on Ax(φ•).

Gap property:

If φ ∈ Bir(P2
C) is a hyperbolic map, then λ(φ) is an algebraic integer with all Galois conjugates

in the unit disk, that is a Salem number, or a Pisot number. The smallest known number is the
Lehmer number λL � 1,176 which is a root of

X10 +X9 −X7 −X6 −X5 −X4 −X3 +X +1.

Blanc and Cantat prove in [3, Corollary 2.7] that there is a gap in the dynamical spectrum Λ ={
λ(φ) |φ ∈ Bir(P2

C)}: there is no dynamical degree in ]1,λL[.

The gap property implies that in fact κ : ψ → κ(ψ) such that ψ•(�) = κ(ψ)� for any � in ZP2
C

lying on Ax(φ•) is a morphism from G to Z. Furthermore kerκ is an infinite subgroup that contains
only elliptic maps. Indeed it is clear that the set of elliptic elements of G coincides with kerα; and
[G,G]⊂ kerα so if kerα is finite, G is abelian up to finite index which is impossible.

Elliptic subgroups of the Cremona group with a large normalizer:

Consider in P2
C the complement of the union of the three lines {x = 0}, {y = 0} and {z =

0}. Denote by U this open set isomorphic to C∗ ×C∗. One has an action of C∗ ×C∗ on U by
translation. Furthermore GL(2,Z) acts on U by monomial maps

[
p q
r s

]
�→

(
(x,y) �→ (xpyq,xrys)

)

One thus has an injective morphism from (C∗ ×C∗)�GL(2,Z) into Bir(P2
C). Let Gtoric be its

image.

One can now apply [15, Theorem 4] that says that if there exists a short exact sequence

1 −→ A −→ N −→ B −→ 1

where N ⊂ Bir(P2
C) contains at least one hyperbolic element, and A ⊂ Bir(P2

C) is an infinite and
that fixes a point in HP2

C
, then N is up to conjugacy a subgroup of Gtoric. Hence up to birational

conjugacy G ⊂ Gtoric.

One can now state:
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Proposition 3.14 ([16]). Let G be an infinite solvable, non virtually abelian, subgroup of Bir(P2
C).

If G contains a hyperbolic birational map, then G is, up to conjugacy and finite index, a subgroup
of

〈(xpyq,xrys), (αx,βy) |α, β ∈ C∗〉

where

[
p q
r s

]
denotes an element of GL(2,Z) with spectral radius > 1.

B. Solvable groups with a twist
Consider a solvable, non abelian, subgroup G of Bir(P2

C). Let us assume that G contains a
twist φ; the map φ preserves a unique fibration F that is rational or elliptic. Let us prove that any
element of G preserves F . Denote by α(φ•) ∈ ∂HP2

C
the fixed point of φ•. Take one element in

LZP2
C

still denoted α(φ•) that represents α(φ•). Take ϕ ∈ G such that ϕ(α(φ•)) �= α(φ•). Then
ψ = ϕφϕ−1 is parabolic and fixes the unique element α(ψ•) of LZP2

C
proportional to ϕ(α(φ•)).

Take ε > 0 such that U(α(φ•),ε)∩U(α(ψ•),ε) = /0 where

U(α,ε) =
{
� ∈ LZP2

C
|α · � < ε

}
.

Since ψ• is parabolic, then for n large enough the inclusion

ψn
•
(
U(α(φ•),ε)

)
⊂ U(α(ψ•),ε)

holds. For m sufficiently large

φm
• ψn

•
(
U(α(φ•),ε)

)
⊂
(
U(α(φ•),ε/2)

)
�
(
U(α(φ•),ε)

)
.

Hence φm
• ψn

• is hyperbolic. You can by this way build two hyperbolic maps whose sets of fixed
points are distinct: this gives a contradiction with Lemma 3.13. So for any ϕ ∈ G one has :
α(φ•) = α(ϕ•); one can thus state the following result.

Proposition 3.15 ([16]). Let G be a solvable, non abelian, subgroup of Bir(P2
C) that contains a

twist φ. Then

• if φ is a Jonquières twist, then G preserves a rational fibration, that is up to birational
conjugacy G is a subgroup of PGL(2,C(y))�PGL(2,C),

• if φ is a Halphen twist, then G preserves an elliptic fibration.

If G is uncountable, then φ is a Jonquières twist.

Remark 3.16. Both cases are mutually exclusive.
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Example 3.17. If φ ∈ Bir(P2
C) preserves a unique fibration that is rational then one can assume

that up to birational conjugacy this fibration is given, in the affine chart z = 1, by y = cst. If φ
preserves y = cst fiberwise, then

• φ is contained in a maximal abelian subgroup denoted Ab(φ) that preserves y= cst fiberwise
([17]),

• the centralizer of φ is a finite extension of Ab(φ) (see [10, Theorem B]).

This allows us to establish that if φ preserves a fibration not fiberwise, then the centralizer of φ is
virtually solvable ([10, Corollary C]). For instance if φ =

(
x+ a(y),y+ 1

)
(resp.

(
b(y)x,βy

)
or(

x+a(y),βy
)

with β ∈ C∗ of infinite order) preserves a unique fibration, then the centralizer of φ
is solvable and metabelian ([10, Propositions 5.1 and 5.2]).

C. Solvable groups with no hyperbolic map, and no twist
Let M be a smooth, irreducible, complex, projective variety of dimension n. Fix a Kähler form

ω on M. If � is a positive integer, denote by xi : M� → M the projection onto the i-th factor. The

manifold M� is then endowed with the Kähler form
�

∑
i=1

x∗i ω which induces a Kähler metric. To any

φ ∈ Bir(M) one can associate its graph Γφ ⊂ M×M defined as the Zariski closure of
{
(z,φ(z)) ∈ M×M |z ∈ M� Indφ

}
.

By construction Γφ is an irreducible subvariety of M ×M of dimension n. Both projections x1,
x2 : M×M → M restrict to birational morphisms x1, x2 : Γφ → M.

The total degree tdegφ of φ ∈ Bir(M) is defined as the volume of Γφ with respect to the fixed
metric on M×M:

tdegφ =
∫

Γφ

(
x∗1ω+ x∗2ω

)n
=

∫

M�Indφ

(
ω+φ∗ω

)n
.

Let d ≥ 1 be a natural integer, and set

Bird(M) =
{

φ ∈ Bir(M) | tdegφ ≤ d
}
.

A subgroup G of Bir(M) has bounded degree if it is contained in Bird(M) for some d ∈ N∗.

Any subgroup G of Bir(M) that has bounded degree can be regularized, that is up to birational
conjugacy all indeterminacy points of all elements of G disappear simultaneously:

Theorem 3.18 ([36]). Let M be a complex projective variety, and let G be a subgroup of Bir(M).
If G has bounded degree, there exists a smooth, complex, projective variety M′, and a birational
map ψ : M′ ��� M such that ψ−1Gψ is a subgroup of Aut(M′).
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Solution 26. — Let p be a point of P2
C, let S1 be the surface obtained by blowing up P2

C at p, and
let Ep be the exceptional divisor of this blow-up. Consider a point q on Ep; denote by S2 the surface
obtained by blowing up q and by Eq the associated exceptional divisor. Both ep and eq belong to
the image of NS(S2) in ZP2

C
. Let Ẽp be the strict transform of Ep in S2. Then ep corresponds to

Ẽp +Eq and eq to Eq. Hence
{

ep · ep = Ẽ2
p +E2

q +2Ẽp ·Eq =−2−1+2 =−1
ep · eq = (Ẽp ·Eq)+E2

q = 1−1 = 0 if p �= q

Solution 27. — As p = α(φ•)+ω(φ•) ∈ Ax(φ•) then

φ•(p) =
α(φ•)

λ(φ)
+λ(φ)ω(φ•).

Since φ•
(
α(φ•)

)
= α(φ•)

λ(φ) and φ•
(
ω(φ•)

)
= λ(φ)ω(φ•) we have:

2cosh(dist(p,φ•(p))) = 2p ·φ•(p) = λ(φ)+
1

λ(φ)
.

Furthermore
2cosh(L(φ•)) = eL(φ•) +

1
eL(φ•)

Solution 28. — If φ is an isomorphism on a neighborhood of p, and φ(p) = q, then φ•(ep) = eq.
If Lq1q2 is blown down onto p0 by φ−1, then

φ•(ep0) = h− eq1 − eq2 φ•(h) = 2h− eq0 − eq1 − eq2

where h is the class of a line in P2
C.

Solution 29. — One has

φ•(h) = dh− (d −1)ep0 −
2d−2

∑
i=1

epi

where the pi’s are generic distinct points of P2
C.

Solution 30. A subgroup of Aut(P2
C) that illustrates case 1. is

{
(αx+βy+ γ,δy+ ε) |α, δ ∈ C∗, β, γ, ε ∈ C

}
⊂ Aut(P2

C).

Solution 31. A subgroup of Aut(C2) that illustrates case 1. is

E =
{
(αx+P(y),βy+ γ) |α, β ∈ C∗, γ ∈ C, P ∈ C[y]

}
⊂ Aut(C2).
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Example 3.17. If φ ∈ Bir(P2
C) preserves a unique fibration that is rational then one can assume

that up to birational conjugacy this fibration is given, in the affine chart z = 1, by y = cst. If φ
preserves y = cst fiberwise, then

• φ is contained in a maximal abelian subgroup denoted Ab(φ) that preserves y= cst fiberwise
([17]),

• the centralizer of φ is a finite extension of Ab(φ) (see [10, Theorem B]).

This allows us to establish that if φ preserves a fibration not fiberwise, then the centralizer of φ is
virtually solvable ([10, Corollary C]). For instance if φ =

(
x+ a(y),y+ 1

)
(resp.

(
b(y)x,βy

)
or(

x+a(y),βy
)

with β ∈ C∗ of infinite order) preserves a unique fibration, then the centralizer of φ
is solvable and metabelian ([10, Propositions 5.1 and 5.2]).

C. Solvable groups with no hyperbolic map, and no twist
Let M be a smooth, irreducible, complex, projective variety of dimension n. Fix a Kähler form

ω on M. If � is a positive integer, denote by xi : M� → M the projection onto the i-th factor. The

manifold M� is then endowed with the Kähler form
�

∑
i=1

x∗i ω which induces a Kähler metric. To any

φ ∈ Bir(M) one can associate its graph Γφ ⊂ M×M defined as the Zariski closure of
{
(z,φ(z)) ∈ M×M |z ∈ M� Indφ

}
.

By construction Γφ is an irreducible subvariety of M ×M of dimension n. Both projections x1,
x2 : M×M → M restrict to birational morphisms x1, x2 : Γφ → M.

The total degree tdegφ of φ ∈ Bir(M) is defined as the volume of Γφ with respect to the fixed
metric on M×M:

tdegφ =
∫

Γφ

(
x∗1ω+ x∗2ω

)n
=

∫

M�Indφ

(
ω+φ∗ω

)n
.

Let d ≥ 1 be a natural integer, and set

Bird(M) =
{

φ ∈ Bir(M) | tdegφ ≤ d
}
.

A subgroup G of Bir(M) has bounded degree if it is contained in Bird(M) for some d ∈ N∗.

Any subgroup G of Bir(M) that has bounded degree can be regularized, that is up to birational
conjugacy all indeterminacy points of all elements of G disappear simultaneously:

Theorem 3.18 ([36]). Let M be a complex projective variety, and let G be a subgroup of Bir(M).
If G has bounded degree, there exists a smooth, complex, projective variety M′, and a birational
map ψ : M′ ��� M such that ψ−1Gψ is a subgroup of Aut(M′).
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Solution 26. — Let p be a point of P2
C, let S1 be the surface obtained by blowing up P2

C at p, and
let Ep be the exceptional divisor of this blow-up. Consider a point q on Ep; denote by S2 the surface
obtained by blowing up q and by Eq the associated exceptional divisor. Both ep and eq belong to
the image of NS(S2) in ZP2

C
. Let Ẽp be the strict transform of Ep in S2. Then ep corresponds to

Ẽp +Eq and eq to Eq. Hence
{

ep · ep = Ẽ2
p +E2

q +2Ẽp ·Eq =−2−1+2 =−1
ep · eq = (Ẽp ·Eq)+E2

q = 1−1 = 0 if p �= q

Solution 27. — As p = α(φ•)+ω(φ•) ∈ Ax(φ•) then

φ•(p) =
α(φ•)

λ(φ)
+λ(φ)ω(φ•).

Since φ•
(
α(φ•)

)
= α(φ•)

λ(φ) and φ•
(
ω(φ•)

)
= λ(φ)ω(φ•) we have:

2cosh(dist(p,φ•(p))) = 2p ·φ•(p) = λ(φ)+
1

λ(φ)
.

Furthermore
2cosh(L(φ•)) = eL(φ•) +

1
eL(φ•)

Solution 28. — If φ is an isomorphism on a neighborhood of p, and φ(p) = q, then φ•(ep) = eq.
If Lq1q2 is blown down onto p0 by φ−1, then

φ•(ep0) = h− eq1 − eq2 φ•(h) = 2h− eq0 − eq1 − eq2

where h is the class of a line in P2
C.

Solution 29. — One has

φ•(h) = dh− (d −1)ep0 −
2d−2

∑
i=1

epi

where the pi’s are generic distinct points of P2
C.

Solution 30. A subgroup of Aut(P2
C) that illustrates case 1. is

{
(αx+βy+ γ,δy+ ε) |α, δ ∈ C∗, β, γ, ε ∈ C

}
⊂ Aut(P2

C).

Solution 31. A subgroup of Aut(C2) that illustrates case 1. is

E =
{
(αx+P(y),βy+ γ) |α, β ∈ C∗, γ ∈ C, P ∈ C[y]

}
⊂ Aut(C2).
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