|
S
5
5=
Q.
S
O




BIBLIOTECA NACIONAL DEL PERU
Centro Bibliografico Nacional

512.0072 VIII Escuela doctoral intercontinental de matematicas PUCP-UVA 2015:
E CIMPA research school / Francisco Ugarte Guerra, Nuria Corral Pérez,
editores.-- 1a ed.-- Lima: Pontificia Universidad Catdlica del Perd, Fondo
Editorial, 2016 (Lima: Tarea Asociacién Grafica Educativa).
244 p.; il., retrs.; 21 cm.

Incluye bibliografias.

D.L.2016-12927
ISBN 978-612-317-203-9

1. Algebra - Estudio y ensefianza 2. Teoria de los nimeros 3. Teoria de
Galois 4. Teoria de los grupos 5. Ecuaciones diferenciales I. Ugarte Guerra,
Francisco, 1972-, editor II. Corral Pérez, Nuria, editora III. Pontificia
Universidad Catdlica del Perd

BNP: 2016-1193

VIII Escuela Doctoral Intercontinental de Matemdticas PUCP-UVA 2015
Francisco Ugarte Guerra y Nuria Corral Pérez, editores

© Francisco Ugarte Guerra y Nuria Corral Pérez, 2016

© Pontificia Universidad Catdlica del Perd, Fondo Editorial, 2016
Av. Universitaria 1801, Lima 32, Pera

feditor@pucp.edu.pe

www.fondoeditorial.pucp.edu.pe

Correccion de estilo y cuidado de la edicién: Fondo Editorial PUCP
Disefio de cubierta: Francisco Ugarte

Primera edicién: octubre de 2016
Tiraje: 500 ejemplares

Prohibida la reproduccién de este libro por cualquier medio, total o parcialmente,
sin permiso expreso de los editores.

Hecho el Depésito Legal en la Biblioteca Nacional del Pertd N° 2016-12927
ISBN: 978-612-317-203-9
Registro del Proyecto Editorial: 31501361601055

Impreso en Tarea Asociacién Grafica Educativa
Pasaje Maria Auxiliadora 156, Lima 5, Pert



Algebraic properties of groups of complex analytic local
diffeomorphisms

Javier Ribén

INsTITUTO DE MATEMATICA, UNIVERSIDADE FEDERAL FLUMINENSE, RUA MARIO SANTOS
Braca S/N VALONGUINHO, NITEROI, R10 DE JANEIRO, BRASIL 24020-140.

E-mail address: javier@mat.uff.br



Contents
1 Introduction

2 Linear groups
2.1 Example . . . . . ..
2.2 The closure of the group generated by a unipotent matrix . . . . ... ...
2.3 The closure of the group generated by a semisimple matrix . . . ... ...
2.4 The closure of a cyclic group . . . . . .. . ... Lo
2.5 Some elementary properties of linear algebraic groups . . . . ... ... ..
2.6 Classical results . . . . . ... ... .. L

2.7 More properties of algebraic groups . . . . . . .. ...

3 Pro-algebraic groups
3.1 Example . . . ..o
3.2 The group of formal diffeomorphisms . . . . . ... ... ... ... 0oL
3.3 The Jordan-Chevalley decomposition . . . . . . ... ... ... ... ....
34 Formalvectorfields. . . .. ... ... . Lo
3.5 Construction of the algebraic closure . . . . . . .. .. ... ... ......
3.6 Normal forms . . . . . ... ...
3.7 Transferring properties to infinitesimal generators. . . . . . . ... . ... ...
3.8 Firstintegrals . . . . . . ...

3.9 Finding invariant curves . . . . . .. ... oL L
4 Derived series

5 Pro-algebraic groups in dimension 1

199

200
201
201
202
204
206
209
209

211
212
213
215
218
219
228
229
230
230

231

235



ALGEBRAIC PROPERTIES OF GROUPS OF COMPLEX ANALYTIC LOCAL DIFFEOMORPHISMS / JAVIER RIBON

1 Introduction

We study in these notes the algebraic properties of groups of holomorphic local diffeo-
morphisms. In this spirit we introduce the basic notions of the theory of pro-algebraic
groups. Pro-algebraic groups are the analogue of algebraic linear groups in the infinite
dimensional setting of groups of holomorphic local diffeomorphisms. They are very useful
to study properties that determine groups defined by algebraic equations in every space
of jets.

Let us indicate some examples of the study of algebraic group properties that can
be found in the literature. The first example is the study of integrability properties of
holomorphic foliations. Given a holomorphic foliation and a leaf we obtain a holonomy
group as an image of a representation of the fundamental group of a leaf. It is possible to
relate the properties of the derived series of these groups with existence of first integrals
or integrating factors. Initially this point of view was developed to study codimension
1 foliations [15, Mattei-Moussu], [16, Paul]... and it has been applied more recently to
one-dimensional foliations [18, Rebelo-Reis] [4, Camara-Scardua]...

Another example is provided by groups of real analytic diffeomorphisms of compact
surfaces. The properties of groups of local diffeomorphisms are crucial to show that any
nilpotent group of real analytic diffeomorphisms of the sphere is always metabelian, i.e.
its first derived group is abelian [7, Ghys]. It is interesting that algebraic properties can
be exploited to deduce dynamical properties of groups [19, Rebelo-Reis] [20]. Other ap-
plications of the algebraic techniques are the study of the existence of faithful analytic
actions of mapping class groups of surfaces on surfaces [5, Cantat-Cerveau], local intersec-
tion dynamics [23, Seigal-Yakovenko| [2, Binyamini], derived length [13, Martelo-Ribén]
[21]...

We try to give a glimpse of the power of the theory of pro-algebraic groups of formal
diffeomorphisms. We lay the groundwork for the study of the derived length of solvable
subgroups of local diffeomorphisms in section 4. The fruits of this approach are the sharp
bounds for the derived length presented in the results at the end of section 4. We did not
prove such theorems in order to keep the text as elementary as possible. The text contains
other examples of the utility of pro-algebraic groups in sections 3.6, 3.7, 3.8 and 3.9 that
hopefully will motivate the reader. Sometimes we provide a more conceptual interpretation
of well-known properties. But we also give very simple proofs of sophisticated results. For
instance we show that a group of local diffeomorphisms in dimension n whose elements

leave invariant n independent first integrals is necessarily finite (cf. Proposition 3.46).
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Another good application is the uniform bound of the period of periodic analytic curves,

i.e. invariant by an iterate of a fixed local diffeomorphism.

Let us outline the notes. Section 2 is devoted to explain basic properties of linear
groups and to make the reader familiar with these concepts before generalizing them in
the setting of local diffeomorphisms. We introduce pro-algebraic groups, explain their
properties and how to find examples in section 3. We study the properties of the derived
series of a group of local diffeomorphisms in section 4. We define an analogue of the
derived series that is more suitable for algebraic groups than the derived series itself and
study the properties of a group in terms of its Lie algebra. We classify the pro-algebraic

=

subgroups in dimension 1 modulo formal conjugacy in section 5. Finally we provide an

example of a pathological phenomenon of pro-algebraic groups in section 5.

2 Linear groups

We study the algebraic structure of groups of local complex analytic diffeomorphisms. Our
point of view involves applying techniques of linear algebraic groups to obtain analogues for
groups of local diffeomorphisms. In the next section we introduce linear algebraic groups
and stress some properties that will be revisited later on in the context of diffeomorphisms.

Let us consider subgroups of the linear group GL(n,C). The elements of GL(n, C) can
be considered as points in c by identifying each matrix with its list of coefficients. In
this way it makes sense to consider the algebraic closure G~ of a subgroup G of GL(n,C).

The z superindex stands for Zariski-closure.

Proposition 2.1. Let G be a subgroup of GL(n,C). The algebraic closure G of G in
GL(n,C) is a group.

A proof of this result can be found in [3, Proposition 1.3(b), p. 47].

Let us calculate some examples so that we get familiarized with the algebraic closure.
It is natural to start our study with cyclic groups.
Definition 2.2. Let A € GL(n,C). We say that A is unipotent if A — Id is nilpotent or

equivalently if spec(A4) = {1}.
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2.1 Example

Let
100000 0 00O0O0O0
110000 1 00 00O
01 1000 -1/2 1.0 0 0 O
A= = exp
000100 0 00O0O0TO
000110 0 00100
00 00O01 0 00O0O0O

Let us denote by B the matrix in the right hand side so that we have A = exp(B). The
matrix B is nilpotent whereas A is unipotent. Let us calculate the one parameter group
{exp(tB) : t € C}. We have

1 00 00O
t 1.0 0 00
2t
=t t 1.0 00

exp(tB) = 2

p(tB) 0 00100
0 00 ¢t 10
0 0 0001

Clearly {exp(tB) : ¢t € C} is an algebraic group given by
2 _
aj; =1forall j € {1,...,6}, a1 = az2 = as4, az1 = w

and a;; = 0 for any coefficient that does not appear in the previous equations.

Since exp((s + t)B) = exp(sB)exp(tB) for s,t € C, we deduce that A* = exp(kB) for
any k € Z. Let P be a polynomial on the coefficients of the matrices of GL(n,C) that
vanishes on the elements of the cyclic group (A). The expression Q(t) := P(exp(tB)) is
polynomial in ¢. Moreover it vanishes for ¢ € Z since P(A*) = 0 for k € Z. A complex
polynomial that vanishes on the integer numbers is necessarily 0. Thus P vanishes on
{exp(tB) : t € C}. We deduce

(A) C {exp(tB) : t € C} C (A)

and then (A) = {exp(tB) : t € C} since {exp(tB) : t € C} is algcbraic.

2.2 The closure of the group generated by a unipotent matrix

Let us generalize the previous example. Given a unipotent matrix A € GL(n,C) we

consider the unique nilpotent matrix B such that A = exp(B).
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How to calculate B?

e We can write A in Jordan normal form and then to obtain B by using indeterminate
coefficients.

1)t . .
( 1]).J ) motivates us to define B =

e Alternatively the formula log(1 +z) = > 72,
s CV 4 gy,

j=1

The sum defining B has only finitely many non-vanishing terms since A — Id is nilpotent.

The 1-dimensional complex vector space generated by B is the Lie algebra of the group
Z

{A)".

Definition 2.3. We denote log A = B. We say that log A is the infinitesimal generator
of A. We denote A* = exp(tB) for t € C.

The group {A! : t € C} is algebraic. The proof is similar as in the example since we
can write B in Jordan normal form. The same argument of the example shows that any
polynomial on the coefficients of GL(n, C) vanishing on (A) also vanishes on {A® : t € C}.

As a consequence we obtain

Proposition 2.4. Let A be a unipotent element of GL(n,C). Then @Z s equal to
{At:t e C}

2.3 The closure of the group generated by a semisimple matrix

Let us consider a diagonal matrix A = diag(A1, ..., An) € GL(n,C). The algebraic closure

WZ is contained in the algebraic group of diagonal matrices. Let us calculate Wz.
Definition 2.5. Given (ki,...,k,) € Z™ we associate the morphism of groups

Xkt ook ey = c
(CYTUID ¥ IS L
We say that {xx,,.. &, : (k1,...,kn) € Z"} is the group of characters of the complex torus
(€.

Remark 2.6. The group operation is the multiplication of characters. Indeed the map

(k1. kn) = Xk, k, is an isomorphism from Z" onto the group of characters.
Definition 2.7. Let A = (A1,...,\,;) € (C*)". We define

Jy={keZ": x(A) =1} and G, = {ﬁ e (CH™: Xk(p) =1 forall k € Tt
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Let us calculate the Zariski-closure of the group generated by a diagonal matrix. The

arguments are presented in a series of exercises.

Exercise 2.1. Consider a subset J of Z". Show that
{1, 20) € (C) Xy kn (M-, Ag) = L for all (By,... k) € T}

is an algebraic group (we are identifying (C*)™ with the diagonal matrices). Deduce that

G is an algebraic group containing \.

Exercise 2.2. Let py,...u, pairwise different non-vanishing complex numbers. Suppose
that
i+ ey =0

for all k € Z. Show that ¢y =... =¢, =0.

Exercise 2.3. Let P = Zil ..... i ailminxil ...z € Clzy,...,7,] be a polynomial such

that P(AF, ..., \F) = 0 for some (A1,...,)\,) € (C*)" and any k € Z. We define
S={\'.. N tag, ., # 0}

We write P in the form 3° ¢ Zk?---)\i{”:u iy @y ... zin. Show Zk?---)\iﬂ:u aiy i, =0
for any p € S.

Exercise 2.4. Let A = (A,...,\,) € (C*)". Consider
T, M) = {P € Clar,. .. yay] s POY, .., 08 =0 for all k € Z}

and

VI((A) = {p e (C)": P(p) = 0 for all P € I((X))}.
Show Gy = V(I({A))).
Proposition 2.8. @Z = G).

Proposition 2.8 is a consequence of Exercise 2.4.

Corollary 2.9. Let A = (A1,..., ) € (C*)" such that log\i,...,log\,, 27 are Q-
linearly independent (notice that the condition does not depend on the choice of log A; for
1<j<n). Then @z = (C*)".
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2.4 The closure of a cyclic group

So far we calculated WZ for A € GL(n,C) in two cases, namely if A is diagonalizable or
if A is unipotent. What happens in the general case? Let us see that it can be reduced to
the previous ones.

Let us introduce the so called Jordan multiplicative decomposition, it is a diagonalizable-

unipotent decomposition.

Proposition 2.10. Let A € GL(n,C). There exist unique commuting matrices As, Ay, €
GL(n, C) such that As is diagonalizable, A, is unipotent and A = A;A, = Ay As.

The s in the subindex of A, stands for semisimple. Indeed since A, is diagonaliz-
able there exists a direct sum @?:1 V; where V; is a vector subspace of dimension 1 of
eigenvectors of A;. Each action (AS)\Vi : V; = Vj is simple, meaning that it can not be
decomposed anymore or more rigorously that it is irreducible for any 1 < j < n. Since V' is
decomposed into a sum of simple objects for the action of A; we say that Ay is semisimple.
Anyway, we use diagonalizable and semisimple as synonyms.

The proof is an exercise in linear algebra (cf. [3, Corollary 1, p. 81]). The existence
of the decomposition is very easy to prove. Given any matrix the Jordan normal form
theorem implies that up to linear change of coordinates it can be decomposed in diagonal

blocks. For instance a 3 x 3 block is of the form

A0 O A0 O 1 0 0
1 X0 |=[o0ox0 A1 o0
0 1 A 0 0 A 0 A1

The right hand side is the multiplicative Jordan decomposition of the block. Proceeding
analogously for each block we obtain the Jordan decomposition for the initial matrix.
This decomposition is also called Jordan-Chevalley decomposition. It is due to the

following result:

Theorem 2.11 (Chevalley, cf. [3, section 1.4.4, p. 83]). Let G be a linear algebraic
subgroup of GL(n,C). Given any A € G both the semisimple and the unipotent parts As
and A, of A also belong to G.

This result is extremely important and very useful to calculate invariance groups asso-
ciated to geometrical actions. Later on we will see some examples in the context of groups
of diffeomorphisms.

The Chevalley’s theorem implies that (A)z contains A; and A, and then the group

generated by (As>z and (Au)z. Are we missing some elements? The answer is no!
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Proposition 2.12. Let A € GL(n,C). Then (A) is equal to the abelian group generated

zZ

by (A5)" and (A,)". In particular (A is isomorphic to the direct product (Ag)° x (Aqy) .

How to prove Proposition 2.127 It is known that algebraic properties of groups do not
change when considering the algebraic closure, so since (A) is abelian the closure WZ is
also abelian. Anyway, let us prove such result in order to gain some familiarity with these

concepts.

Lemma 2.13. Let G be a commutative linear algebraic subgroup of GL(n,C). Then e

is commutative.
Proof. We define
Z(G) ={A € GL(n,C): AB— BA =0 for all B € G}.

Clearly Z(G) is a group (the so called centralizer of G) and it is algebraic since fixed
B € G the equation AB — BA = 0 is linear in the coefficients of A. Since G is abelian,
Z(G) contains G. We obtain G° C Z(G) = Z(G). In particular G is contained in Z(G")
and since the latter group is algebraic we deduce G cz (éz). The latter property is
equivalent to G~ being abelian. |

Exercise 2.5. Lemma 2.13 and Chevalley’s theorem imply that the group generated by

(A,)" and (A,)” is abelian. Show this result without using Chevalley’s theorem.

How to find an algebraic group that contains <AS>Z U <Au)z? We can consider a mor-

phism

z

x (A x (A — GL(n,C)
(B,C) —  BC

The group <AS)Z X <Au>z can be interpreted as a linear matrix group, for instance as
a subgroup of GL(2n,C) making (A,)  (resp. (Ay) ) act on the first (resp. last) n
coordinates. We claim that it is a morphism of groups and an algebraic morphism, i.e. a

morphism of algebraic groups. It is clear that x is an algebraic morphism. Moreover x

is a morphism of groups since the elements of (AS>Z commute with the elements of <Au>z.

Now we can use the following result:

Proposition 2.14 (cf. [3, Corollary 1.4, p. 47]). Let o : G — G’ be a morphism of matriz

algebraic groups. Then a(G) is an algebraic group.
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Remark 2.15. Given a subset M of GL(n,C) we denote by A(M) the intersection of the
algebraic groups containing M. Clearly A(M) is an algebraic group, the smallest one
containing M. Let o : G — G’ be a morphism of matrix algebraic groups and M C G. We
obtain a(A(M)) = A(a(M)). Indeed (A(M)) is an algebraic group containing «(M) by
Proposition 2.14 and then A(a(M)) C a(A(M)). Moreover since « is continuous in the
Zariski topology we obtain that a~!(A(a(M))) is an algebraic group containing M and
then A(M). We deduce a(A(M)) C A(a(M)).

Proof of Proposition 2.12. This is just a recap of the discussion above. The semisimple
and unipotent parts A; and A, of A belong to Wz by Chevalley’s theorem. Thus <As)z,
(4,)" and then x ((A,) x(A,)") are contained in {A)" . Since x ({A;) x (A,)") is algebraic

and contains the matrix A, we obtain

The map x is injective. Indeed if x(B, ) = BC = Id for some B € (4,) and C € (A,)
then BC is a Jordan-Chevalley decomposition of the identity map. Therefore we obtain
B=1Idand C = Id. As a consequence (A) is isomorphic to (A,) X (Ay) . O

Exercise 2.6. Let G be an abelian subgroup of GL(n, C). Show
e The set of semisimple elements of G is a group.
e The set of unipotent elements of G is a group.
e Every semisimple element of G commutes with every unipotent element of G.

The group @z satisfies the conditions of Exercise 2.6 by Proposition 2.12. The goal

of the exercise is extending this property to every abelian matrix group.

Remark 2.16. Is there any other distinguished class of groups that satisfies the properties
in Exercise 2.67 Nilpotent groups do (Suprunenko and Tyskevic, cf. [27, Theorem 7.11,
p- 97)).

2.5 Some elementary properties of linear algebraic groups

Let G be a linear algebraic matrix subgroup of GL(n,C). We introduce some properties
of algebraic matrix groups that generalize in the setting of local diffeomorphisms. By no

means the list is supposed to be exhaustive.
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Definition 2.17. We denote by G the connected component of the identity transforma-
tion Id.

Proposition 2.18 (cf. [3, Chapter I.1, p. 46]). Let G be a linear algebraic matriz subgroup
of GL(n,C). Then

e (G is a smooth manifold.

e Gy is a closed finite index normal subgroup of G.

e FEuvery algebraic subgroup of G of finite index contains Gjy.
In particular Gg is a linear algebraic group.

Remark 2.19. When we use topological terms as “closed” or “connected” in Proposition
2.18 we are referring to the Zariski topology. Anyway, an algebraic set is connected in the
Zariski topology if and only if it is connected in the usual topology. This can be deduced
from the connectedness in the usual topology of irreducible algebraic sets (cf. [25, Chapter
VII.2.2, Theorem 1]).

Definition 2.20. Let G be a linear algebraic group (or a Lie group). We define
L(G) = {A € End(C") : exp(tA) € G for all t € C}.

Equivalently L(G) is the tangent space T14G of G at Id. We say that L(G) is the Lie
algebra of the group G.

Exercise 2.7. Show the equivalence between the two definitions of L(G).
The definition is justified by the next result.

Proposition 2.21. L(G) is a complex Lie algebra where the Lie bracket [A, B is defined
by AB — BA.

The definition implies that the set exp(L(G)) is contained in Go. Even if these sets
can be different we have

Proposition 2.22 (cf. [26, section 8.6, p. 177]). Let G be a linear algebraic group (or
more generally a Lie group). Then Gy = (exp(L(G))).

Exercise 2.8. Show that the Lie algebra of the algebraic group
SL(2,C) = {A € GL(2,C) : det A = 1}

is equal to sl(2,C) = {A € End(C?) : Tr(A) = 0}.
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Exercise 2.9. Show that any matrix in exp(sl(2,C)) has Jordan normal form
A0 10
or .
0 At 11
-1 0
1 -1

does not belong to exp(sl(2,C)) and that exp : sl(2,C) — SL(2,C) is not surjective.

Show that

Let us applicate the previous definitions to our test examples.

Remark 2.23. Let A € GL(n, C) be unipotent. The Lie algebra of @z is the 1-dimensional
complex vector space generated by the infinitesimal generator log A of A. The group Wa

is connected, indeed it is isomorphic to C.

Exercise 2.10. Let G be a linear algebraic group. Consider a unipotent element A of G.
Show that A belongs to Gy.

Exercise 2.11. Consider the diagonal matrix A = diag()A) where A = (A,...,\,) €
(C*)™. Let Jy the subgroup of Z" of definition 2.7. We define J} as the intersection of the
Q-vector space generated by Jy and Z". Show that the group

(1€ (C)" Xy () = 1 Tor all by, ) € J3)
is equal to the connected component of the identity of (A) . Show
L(@Z) = {dla‘g(uh oo 7/J’7L) : kl/ufl +...+ knun =0 for all (k17 ceey kn) € JA}

Let us show a result that will be useful later on. We obtain the Zariski-closure of (4)
as a Zariski-closure of groups generated by iterates of A.
Proposition 2.24. Let A € GL(n,C). Consider k € Z.\ {0} such that A¥ € (A),. Then
we obtain (AF) = Ay,
Proof. We denote H = (AF)". Since A(A¥)A~1 = (AF) we deduce AHA™! = H. The
group H is a finite index subgroup of (H, A). Morever since H is algebraic, the group
(H,A) is algebraic; indeed (H,A) is the algebraic closure of (A). The last item of
Proposition 2.18 implies @z C H. Since H C @S by the choice of k, we obtain
(4F)” = (A),. D
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Let g be a Lie subalgebra of End(C™). When is g algebraic? More precisely, when
is g the Lie algebra of an algebraic matrix group? There is a complete answer for this
question (cf. [3, Chapter II, section 7]). Let us focus though on a simpler problem in the

next exercise.

Exercise 2.12. Let p = (p1,...,1n) € C". Suppose that p1,...,u, are Q-linearly
independent. Show that the Lie algebra generated by diag(y) is non-algebraic.

2.6 Classical results

Let us introduce well-known results by Lie and Kolchin about the structure of groups of

unipotent elements and solvable groups.

Theorem 2.25 (Kolchin, cf. [24, chapter V, p. 35]). Let V' be a finite dimensional vector
space over a field K. Let G be a subgroup of GL(V') such that each element g € G is

unipotent. Then up to a change of base G is a group of upper triangular matrices.
Theorem 2.26 (Lie-Kolchin, cf. [8, section 17.6, p. 113]). Let G be a solvable connected
subgroup of GL(n, F) where F is an algebraically closed field. Then up to a change of base
G is a group of upper triangular matrices.

2.7 More properties of algebraic groups

We continue describing the properties of the algebraic closure of a subgroup of GL(n, C).

Definition 2.27. Let G be a subgroup of GL(n, C). We denote by G,, the subset of G of

unipotent transformations. We say that the group G is unipotent if G = G,,.
Definition 2.28. Let G be a group. We define the derived group G (or [G,G)) of G as
G =(fgf g fg€C),

ie. GW is the subgroup generated by the commutators of elements of G. We define
G® = [¢M,aM], a® = [G®, G, ... recursively. We denote GO = G.

Definition 2.29. We say that G is solvable if there exists p € NU{0} such that G®) = {1}.
Moreover the minimum such p is called the derived length ¢(G) of G. We define {(G) = 0o
if G is non-solvable.

Lemma 2.30. Let G be a subgroup of GL(n,C). Then
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o UG =0G).

o (G7)uC (G-

o G = (G, if G is unipotent.

o (G7), is a closed normal connected subgroup of the group G~ if G is solvable.

Proof. Since £(G) < £(G7) it suffices to prove that G® = {Id} implies (G)® = {Id}.
The property G®) = {Id} is equivalent to a system of algebraic equations. The system is
also satisfied for G~ by definition of the Zariski-closure. Hence we obtain (G~)®) = {Id}.

The second item is a consequence of Exercise 2.10.

We claim that (G”), is an algebraic subset of G°. Indeed it is the subset of G~ defined
by the equation (A — Id)™ = 0 that is algebraic in the coefficients of A. Let G be a
unipotent group. We have G C (éz)u c G°. Since G is the minimal algebraic set
containing G, we deduce (G*), = G".

Let us show the last item. We already proved that (Gz)u is closed (or equivalently
algebraic). Given A4 € (G°),, we have

(At teCy=(A) C (G )y =(C)u

and {A? : t € C} is a connected set containing Id and A. Therefore (G°),, coincides with
its connected component of Id and it is connected. It is clear that (G ), is normal as a set,
meaning A(G"),A~! = (G7), since a conjugate of a unipotent matrix is also unipotent.
Notice that we did not use so far that G is solvable, we will use it now to show that (éz)u
is a subgroup.

The group G~ is solvable by the first item and (@Z)o is solvable too since it is a subgroup
of G°. The group (62)0 is connected by definition, hence we apply Lie-Kolchin’s theorem;
we can suppose that it is a group of upper triangular matrices up to linear conjugacy.
The eigenvalues of an upper triangular matrix are exactly the coefficients in the principal
diagonal of the matrix. Thus the elements of (G ), are the elements of (G*)o that have all
the elements of the diagonal principal equal to 1. The product of two elements of (éz)u
is still an upper triangular matrix whose principal diagonal coefficients are all equal to 1
and in particular belongs to (G°),. Analogously the inverse of an element of (G°),, also
belongs to (G~),. We deduce that (G°), is a group. O

Exercise 2.13. Show that the subset of unipotent elements of the algebraic group GL(n, C)

is not a group.
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3 Pro-algebraic groups

Inspired by matrix groups we want to define the algebraic closure of a group of local
diffeomorphisms. The main problem is that groups of diffeomorphisms can be infinite

dimensional. Indeed an element ¢ of Diff (C™,0) is of the form

olerm)=( Y abetoal S al el ad)
i1t tin>1 i1t tin>1

where the linear part Dg¢ at 0 is an invertible matrix and there are infinitely many
coefficients in the power series defining ¢. Anyway given any degree there are finitely
many coefficients up to that degree. This suggests that it could be interesting to truncate
a group of diffeomorphisms up to any degree, considering the algebraic closure in each
of them and then pasting the information obtained. Let us explain how to execute this
strategy in this section.

The first idea is forgetting for a minute that a diffeomorphism is a dynamical object.

Let us interpret a diffeomorphism as an operator in a space of functions.

Definition 3.1. We denote by O, be the local ring C[z1,...,,]] of complex formal

power series in n variables. We denote by m the maximal ideal of On.

Every local diffeomorphism ¢ € Diff (C”,0) induces two morphisms of C-algebras by

composition in O, and m respectively:

(1)

O, - O, m - m
f

and
— fo¢ f = foo.

The map that associates to any ¢ € Diff (C™,0) the operator induced by ¢ in m or O, is
injective since ¢ is determined by the compositions 1 0 @, ..., x, o ¢.
Instead of considering the action of ¢ € Diff (C",0) on m let us consider the action

k+1 i e. on the space of k-jets.

induced on the finite dimensional vector complex space m/m
We remind the reader that m*+! is the (k + 1)th-power of the ideal m. Intuitively we are
considering the power series expansion of ¢ up to order k. More precisely we consider the

element ¢y, € GL(m/m**!) defined by

m/mEtl %/ mh

g+mftl s go g4+ mhtl

(2)

Definition 3.2. We define Dy, = {¢}. : ¢ € Diff(C",0)}.
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Remark 3.3. Dy is a subgroup of the linear group GL(m/m*+1).

Exercise 3.1. Show that D}, is the group of isomorphisms of the C-algebra m/m*+1,

The group Dy can be understood as an algebraic group of matrices by noticing that

we have
Dy = {a € GL(m/m 1) : a(gh) = alg)a(h) for all g, h € m/mF+1}

and that fixed g, h € m/m**+! the equation a(gh) = a(g)a(h) is algebraic on the coefficients

of a.

3.1 Example

Let us illustrate the algebraic nature of Dy for n = 2. We denote x = 1 and y = z2. A
base of m/m3 is given by the classes of the monomials of degree 1 and 2, namely z, y, 22,
xy and y2. Any element A of GL(m/m3) is represented by a 5 x 5 invertible matrix

ailr a2 @13 a4 ais
a1 Q22 Q23 QA24 Q425
asl a3z asz a4 Aass
a41 Q42 Q43 Q44 Q45

as1 G52 Q53 Q54 As5
in such a basis. Notice that
Az +m®) = ayx + any + az2? + agxy + az1y® + md

and

Ay +m3) = 197 + agoy + azox® + aspry + asoy® + md

determine an element A of Do since 22, zy and y? are products of = and y. The equation
A(2? +m?) = A(z + m?) A(z + m3) implies

a13T + ag3y + a33z2 + aq32y + a53y2 = (aum + a1y + a31x2 + aqzy + a51y2)2

modulo m?, i.e. modulo discarding the terms of degree greater or equal than 3. In

particular we obtain

2 2
a1z =0, ags = 0,a33 = ayy, as3 = 2anaz, as3 = ay;. (3)
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By analyzing A(zy + m3) = A(z + m3)A(y + m?) and A(y? + m3) = A(y + m3) A(y + m?)

we obtain
a1g =0, a4 = 0,a34 = a11012, a44 = a11022 + 21012, A54 = a21022 (4)

and

2 2
a5 =0, ags = 0,a35 = ajy, a5 = 2012022, a55 = a3y (5)

respectively. Equations (3), (4) and (5) determine the algebraic group Ds.

3.2 The group of formal diffeomorphisms

We can think of Dy, as the truncation of the group Diff (C",0) up to the order k. Let us
study the relations between the groups Dy, for k € N.

Consider [ > k > 1. We want to define a natural map m;, : D; — Dy, for [ > k > 1.
The idea is that the truncation of a diffeomorphism up to order [ provides all truncations
of orders less than I. The map 7, strips the elements of D; of the information associated
to the levels higher than k.

Definition 3.4. Given [ > k > 1 and A € D; we define m; ;(A) as the unique element of
Dy, such that
m/mi+1 A, m/mi+1

1 1

k+1 7\'I,k(A)

AT m/mk+1

m/m
is commutative where the vertical arrows are the natural projections.

The map 7y, : D; — Dy, is well-defined since every element of D; leaves invariant every

subspace of the form m?/m‘t! for 1 < p <1+ 1 and in particular m*+! /m!+1,
Exercise 3.2. Let ¢ € Diff (C*,0). Show 7 (¢1) = ¢ for I > k > 1.

Lemma 3.5. The pair ((Dy)ken, (Ti1)i>k>1) is an inverse system of algebraic groups and

morphisms of algebraic groups. Moreover my, is surjective for any I > k > 1.

sketch of proof. It is a simple exercise to check out that m; is a morphism of algebraic
groups. We are just forgetting the action of an element of D; on m**!/m!+!,

We have 7, = Id|Dp and mjjom = 7 for allp € Nand j > 1 > k > 1 by Definition
3.4.

Fix [ > k > 1. The map 7 is surjective, in fact given A € Dj there exists by
definition ¢ € Diff (C™, 0) such that ¢, = A and we have m 1 (¢;) = ¢ = A. |
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Definition 3.6. We define the group Dift (C™,0) of formal diffeomorphisms as the pro-
jective limit ]{iinkeN Dy.

Remark 3.7. Let us remind that the elements of @keN Dy, are of the form (Ay)g>1 where
Ay, € Dy, and w1, (A;) = Ay for all I > k > 1. In particular the map

Diff (C",0) — Diff (C",0)
é = ()1

is an injective morphism of groups. In this way we see Diff (C™,0) as a subgroup of
Diff (C", 0).

Let us give a (maybe) more pleasant presentation of the group of formal diffeomorphism
in which it is clear that Diff (€C™,0) is the formal completion of Diff (C™,0).

We consider the notation 3 a;z¢ for formal power series where i = (i1,...,iy) is a
multi-index of degree |i| = i1 + ... + 4, and 2¢ = 2! ... 2% Given a power series Y a;z?
we define j*(3 azt) = Z\ilék a;zt. We define j*(f1,...,f.) = (G*f1,...,j%fa) for a
n-uple of power series.

Consider the set Diff(C",0) of elements (¢1,. .., ¢,) of m™ such that (j1é1,..., 5 ¢,)
is an invertible linar map. The set of elements of Diff (C™, 0) such that all their coordinates

are convergent power series coincides with the group Diff (C™,0) by the inverse function
theorem. It would be natural to define Diff (C™, 0) as the group of formal diffeomorphisms
too. This is not an issue in our approach since ]{iﬂlkeN Dy, and Diff (C™, 0) can be identified.
Exercise 3.3. Define a group operation in Diff (C™, 0) such that Diff (C",0) is a subgroup
of Diff(C", 0).

Given

let us construct an element of l'LnDk. The diffeomorphisms j'7, /57 € Diff (C*,0) satisfy

k+1

(5'Mk = (j*7)y for any I > k > 1 (the action on m/m**+! depends on the power expansion

of the diffeomorphism up to order k). We define ny = (j*7)x, for k € N and n = (nx)r>1.
Then 7 belongs to @Dk since

me(m) = (G = Gk = Gk = me

for all I > k > 1. The second equality is a consequence of 577 € Diff (C",0) and Remark
3.7. Resuming we associate 7 € Diff (C™,0) to 77 € Diff(C™,0).
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Let us describe the inverse process. Given n € m Dy, we want to interpret it in

keN
some way closer to our intuition of what a diffeomorphism is. Indeed if n € Diff (C",0)
then the image of z; by the operator defined by n (cf. Equation (1)) is the jth coordinate

xjon of . How to obtain the jth coordinate of an element (Aj)g>1 of yLnkeN D7 We

consider the sequence (Ay(z; + m**1));>1. Since it belongs to m = ]{iilm/mk“7 we can
interpret (Ay(z; +mF 1)) 51 as an element 7; of m. Moreover jlm +m?,..., jln, +m? is

the image by A; of the basis x1 +m?, ..., z, +m2. Since A is invertible, (j'n1,...,5'n,)

is also an invertible linear map. We deduce that

(@1, xn) = (@, @)y (T, T0)
belongs to Diff(C™,0).

Exercise 3.4. Show that the correspondences 7 — 1 and n — 7 described above are
inverses of each other. Deduce that Diff (C™,0) and Diff(C",0) are isomorphic groups.

3.3 The Jordan-Chevalley decomposition

Let us see that the Jordan-Chevalley decomposition is compatible with the inverse system
((Dg)ken, (T k)i>k>1) and as a consequence formal diffeomorphisms possess a multiplica-
tive Jordan decomposition.

Let ¢ € Diff (C",0) (or Diff (C",0)). We already know that ¢ defines an element
(dr)k>1 of lim Dy,. (cf. Equation (2)). Since ¢p € GL(m/m*+1) we can consider its
semisimple-unipotent decomposition ¢ = ¢ sPru = Pk,uPk,s. The elements of the de-

composition belong to Dy by Chevalley’s theorem.

Exercise 3.5. Let | > k > 1 and A € D;. Show that m ;(As) is semisimple and 7 ;(Ay)

is unipotent.

Exercise 3.6. Let ¢ € ]ji?f((C",O). Show 7k (d1s) = br,s and mg(dru) = Gru for
1>k > 1. Deduce that (¢p)r>1 and (¢gu)r>1 define elements of Diff (C™,0).

Definition 3.8. Let ¢ € Diff (C™,0). We say that ¢ is semisimple if ¢y, is semisimple (cf.
Equation (2)) for any k € N.

Definition 3.9. Let ¢ € Diff (C™,0). We say that ¢ is unipotent if ¢y, is unipotent (cf.
Equation (2)) for any k& € N. Given a subgroup G of Diff (C",0) we define G, as its subset
of unipotent elements. We say that G is unipotent if G = G,. We denote by Iﬁu(cn, 0)

the subset of Diff (C™,0) consisting of unipotent formal diffeomorphisms.
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Definition 3.10. We denote by ¢, (resp. ¢,) the element (¢g s)r>1 (resp. (pu)r>1) of
Diff (C", 0).

We can summarize the previous discussion in the following result:

Proposition 3.11. Let ¢ € Dift (C™0). There exist unique elements ¢s, ¢u, Ofﬁl?f (€™,0)
such that ¢ = ¢s 0 ¢y = Py © G, Os is semisimple and ¢, is unipotent.

We generalized the multiplicative Jordan decomposition for diffeomorphisms. Anyway,
it is difficult to check out whether a diffeomorphism is semisimple or unipotent by applying
the definition since it depends on their actions on all the jet spaces. Let us characterize

the decomposition in simpler terms.

Proposition 3.12. Let ¢ € Diff (C™,0). Then ¢ is unipotent if and only if j*¢ is unipo-

tent.

Proof. The matrix of j'¢ is the transposed of the matrix of ¢;. Thus ¢; is unipotent if
and only if j1¢ is unipotent.

We have to show that ¢ is unipotent for any k& € N if and only if ¢; is unipotent.
Let us prove the non-trivial implication. Consider the operator A : m — m defined by
A(f) = fo¢— f. The unipotence of ¢, is equivalent to the existence of some [ = (k)
such that Al(m) C m**1. Hence it suffices to show that given k € N there exists j;, € N
such that A% (m*) ¢ mF*1. The existence of j; is a consequence of the unipotence of ¢;.

We have

A(fg)=(fg)ed—fg=(fed—fllged—g)+(fod—flg+ flgod—g)
and then A(fg) = A(f)A(g) + A(f)g + fA(g). Given j > 1 we obtain

A(fg) = > cimA™ (F)A(g) (©)
j<m+l, 0<m<j, 0<I<j
where cjp, is a positive integer number independent of f and g for j <m +1,0<m <j
and 0 <[ <j.

Suppose Ak (mF) ¢ mFt! for some k € N. We define jpy1 = jp + j1. Let f € mF
and g € m. Consider a non-vanishing coefficient ¢;, , ,»u in Equation (6). Then we have
either m > ji or | > ji. In the former case the term c]-H]mlAm(f)Al(g) belongs to
mF+2 = mF+lm whereas it belongs to m*+2 = m*m? in the latter case. Anyway AJk+1(fg)
belongs to m*+2. Since any element of mFt! is of the form figi + ... + fuge where

fi,o. faemFand g,..., g, € m, we deduce Adr+1(mF+1) C mh+2, O
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Next we see that a diffeomorphism is semisimple if and only if it is diagonalizable.

Proposition 3.13. Let ¢ € Diff (C™,0). Then ¢ is semisimple if and only if there exists
(NS Diff (C™,0) such that o pop™! = (M\x1,..., Ann) for some (A1,...,\p) € (C)™.

Proof. Let us prove the necessary condition. The formula n(z1,...,z,) = (A121,. .., AnZn)
defines an element 1 of Diff (C",0). We claim that the transformation 7, is semisimple
for any k£ € N. Indeed Lzll ...xin +mFt1 s an eigenvector of 7 of eigenvalue /\li1 . Aln for

L e

1 <i1+4...4+14, <k Since the classes of the monomials define a basis of m/m
deduce that there exists a basis of eigenvectors for 7. Since ¢y is conjugated to 7 by a
linear map, ¢y is semisimple for any k& € N.

Let us show the sufficient condition. Since ¢; is semisimple there exists a linear map
11 such that 101 o jl¢o wl_l = (M1, ..., Apy) for some (A1,...,A,) € (C*)™. We denote
(@1, ..., 2n) = (M21,..., Anxy). Let us see that if there exists ¢, € Diff (C", 0) such that
Yropo 1/)];1 is equal to 7 modulo m**! (or in other words (¢}, 0 ¢ o w;l)k = 1) then there
exists ¢+ € Diff (C",0) such that ¢p41 0o wkjl is equal to 7 modulo m*+2. Moreover
we can choose ¥y41 such that it is equal to 1, modulo m**!. This result implies that
(¢r)k>1 defines an element of Diff (C™,0) such that ¢ o poyp™ =n.

We replace ¢ with ¥ o ¢ o wk_l without lack of generality. We say that (i1...in;10) is
resonant and we denote (i1 . ..i;1) € R if Ay = Al ... \in. We define

I

S =Nz + Z aig,...,)\nmn+ Z a;@i

lil=k+1, (51)gR lil=h+1, (in)gR

and

U=|xz1+ Z )\fla}f’? e T+ Z A;laff

li[=k+1, (1)€ER li|=k+1, (i;n)eR
We have j¥+1¢ = j#*1(SoU) = j*¥ (U o §). It is clear that Uy ; is unipotent by
Proposition 3.12. Suppose that we prove the existence of a1 € Diff (C™,0) that is equal
to Id modulo m**! and such that a4 0So a,;_}_l coincides with 7 modulo m**+2. Then it
is clear that Sk is semisimple by the necessary condition and Sgi1Ug1 is the Jordan-
Chevalley decomposition of ¢p11. Since ¢4 is semisimple by hypothesis, we obtain
Uk+1 = Id and then U = Id. In particular a4 0¢o0 “1;11 coincides with  modulo mht2,
Let us diagonalize S modulo m*+2. We define
Qpy1 = w1+. Z /\17A1§’>---73fn+
lil=k+1, (51)¢R

il=k+1, (in)¢R An =
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The diffeomorphism ay41 0 S o a,;il coincides with 5 modulo m*+2, O

3.4 Formal vector fields

We want to apply the theory of linear algebraic groups to subgroups of Diff (C", 0). We will
associate Lie algebras to (yet to be defined) Zariski-closures of subgroups of Diff (C", 0).
The algebraic closures are not necessarily contained in Diff (C", 0) even for subgroups of
Diff (C",0); we need to consider divergent formal diffeomorphisms in the Zariski-closure.
As a consequence the Lie algebras of the Zariski-closure of a subgroup of Diff (C",0) can
not be considered in general as Lie algebras of analytic vector fields. It is necessary to
consider formal vector fields.

Let us denote by X(C", 0) the Lie algebra of (singular) local vector fields defined in the
neighborhood of 0 in C™. An element X of X(C",0) can be interpreted as a derivation of
the C-algebra O,, such that X preserves the maximal ideal of O,,. Naturally the Lie algebra
§€((C", 0) of formal vector fields in n variables is the set of derivations X of O, such that
X(m) C m. A formal vector field X € £(C",0) is determined by X (21), X (z2), ..., X (zp).

‘We obtain

0 0

Definition 3.14. We define Ly, as the Lie algebra of derivations of the C-algebra m/m*+1,
Exercise 3.7. Show that Ly is the Lie algebra of Dy, for any k € N.

Analogously as for formal diffeomorphisms the Lie algebra 3A€((C", 0) can be understood
as a projective limit @keN L. Given X € Z%((C", 0) consider the element (Xj)g>1 that
defines in ]{iLnLk. Since Ly is the Lie algebra of Dy for any k € N, we obtain that
(exp(Xy))x>1 is a formal diffeomorphism ¢. Equivalently given ¢ € C the expression

> >
exp(tX) = | Y ﬁXJ(xl), e ﬁX](xn) (8)

j=0 J=0
defines the exponential of tX where X°(f) = f and XIt1(f) = X(XI(f)) for all f € O,
and j > 0. Equation (8) has to be interpreted as an equality of operators. On the one
hand the image of z; by the operator defined by exp(tX) is equal to zy o exp(tX) by
definition of operator induced by a (maybe formal) diffeomorphism. On the other hand it
has to be ;’io(tX)j(xk)/j! by definition of the exponential of the operator tX.
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Definition 3.15. We say that a formal vector field X € X(C",0) is nilpotent if j'X
is a linear nilpotent vector field (cf. Equation (7)). We denote by Xx(C",0) the set of
nilpotent formal vector fields.

Remark 3.16. Let X = (X3)r>1 € £(C",0). Then X, is nilpotent (as an element of Ly)
for any k£ € N if and only if X is nilpotent. This result is the analogue of Proposition

3.12 for formal vector fields. The proof is similar (but simpler) than for diffeomorphisms.

It is easier to deal with unipotent diffeomorphisms, instead of general ones, since the
formal properties of formal unipotent diffeomorphisms and formal nilpotent vector fields
are analogous.

Proposition 3.17 (cf. [6, 14]). The image of X (C",0) by the exponential map is equal
to ]ji?fu((C"?O) and exp : X5 (C",0) — ]ji?’fu((cn, 0) is a bijection.

Proof. The fundamental remark behind the proof is that the exponential establishes a
bijection from nilpotent matrices to unipotent matrices. The other ingredient is that Lg
is the Lie algebra of Dy.

Consider X = (Xg)p>1 € Xn(C",0). Its exponential exp(X) = (exp(X))i>1 is a
unipotent formal diffeomorphism since exp(X}) is unipotent and belongs to Dy for any
keN.

Let ¢ € Is.igfu((C”,O)‘ The map ¢y is unipotent for & > 1 by definition. The in-
finitesimal generator log ¢ is nilpotent by construction. Moreover log ¢y is in the Lie
algebra of mz since this group is equal to {exp(tlog¢i) : t € C} by Proposition 2.4.
Since (¢k)z C Dy, log ¢y, belongs to the Lie algebra Ly, of Dy,. Therefore (log ¢y )r>1 is a

nilpotent element of %((C" ,0) whose exponential is equal to ¢.

It is clear that the correspondences that we defined are inverse of each other. O

Definition 3.18. Given ¢ € lﬁu(cn, 0) we define its infinitesimal generatorlog ¢ as the
unique element of Xy (C™,0) such that ¢ = exp(log ). We define the 1-parameter group
(#")tec by @' = exp(tlog p).

It is known by results of Baker, Ecalle and Liverpool that generically the infinitesimal
generator of a local diffeomorphism is a divergent vector field [1] [6] [10] (cf. Remark 3.31).
3.5 Construction of the algebraic closure

In this section we construct the Zariski-closure of a subgroup of Diff (C™,0) and describe

its basic properties.
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Definition 3.19. We consider the m-adic topology, also known as the Krull topology, in
Diff (C",0). The sets of the form

Uk = {n € Diff (C",0) : j*n = j*¢}

for ke Nand ¢ € Diff (C™,0) provide a fundamental system of open sets of the topology.
A sequence (1(j))jen in Dift (C™,0) converges to n € Dift (C™,0) if given any k € N then
there exists m(k) such that j5n(m) = j*n for any m > m(k).

Definition 3.20. Let G be a subgroup of Diff (C™,0). We define G, = {¢x : ¢ € G}Z.

Lemma 3.21. Let G be a subgroup of Diff (C™,0). Then we obtain m 1(Gi) = Gy for all
[>k>1.

Proof. The map m;, : Dy — Dy, is a surjective morphism of algebraic groups for [ > k by
Lemma 3.5. Moreover the image by m,x of the smallest algebraic group of GL(m/m!+1)
containing {¢; : ¢ € G} is the smallest algebraic group of GL(m/m*+1) that contains
{¢k : ¢ € G} by Remark 2.15. Hence we have 7, (G;) = Gy, if | > k. O

Definition 3.22. Let G be a subgroup of Diff (C™,0). We define G~ (or 6(0)) aslim, Gy,
more precisely G~ is the subgroup of Diff (C™,0) defined by

G” = {p € Diff (C",0) : ), € Gy, for all k € N}.
We say that G is pro-algebraic if G = G".

The group G~ is the (pro-)algebraic closure of G. It is a projective limit of algebraic

groups.

Exercise 3.8. Show that the pro-algebraic closure of a subgroup G of Dift (C™0) is

pro-algebraic.

The next results are technical lemmas that we use to characterize the pro-algebraic
subgroups of Dift (C™0).

Lemma 3.23. Let Hy, be an algebraic subgroup of Dy, for k € N. Suppose m ,(H;) = Hj,

foralll > k> 1. Then l.glkeN Hy, is a pro-algebraic subgroup of]ji?f (C™,0). Moreover
the natural map @Hj — Hy, is surjective for any k € N.
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Proof. The inverse limit L&lHk is contained in Diff (C™,0) = l&le

An inverse system (Si)reny of non-empty sets and surjective maps indexed by the
natural numbers satisfies that the natural projections pinjeN S; — S, are surjective for
any k € N. Since (mx)g, : Hy — Hy is surjective for [ > k > 1, the natural map
L H; — Hy is qurjective for any k € N. In particular we have {¢} : p € l&lH]} = H;,

for k € N and then ( LHIC LH}c |
Remark 3.24. Let us consider an example. Consider the group
Diff 1 (C",0) := {¢ € Diff (C",0) : j'¢ = Id}

of formal tangent to the identity diffeomorphisms. Denote Hy, = {A € Dy, : w1 (A) = Id}.
It is an algebraic subgroup of Dy, for any k € N. Moreover we have m; ;(H;) = Hj, for all
1>k >1. Since lji?fl((C",O) = lim Hj, it is a pro-algebraic group by Lemma 3.23.

Corollary 3.25. Let G be a subgroup of]ji?f (C™,0). Then the natural map ]{iLnGj — Gj,

is surjective for any k € N.

Proof. We have m ,(G;) = Gy, if | > k by Lemma 3.21. The result is a consequence of
Lemma 3.23. O

We provide two characterizations of pro-algebraic groups in next proposition.

Proposition 3.26. Let G be a subgroup ofﬁf (C™,0). Then the following conditions are

equivalent:
1. G is pro-algebraic.

2. {ok : ¢ € G} is an algebraic matriz group for any k € N and G is closed in the Krull
topology.

3. G is of the form @kel\! Hy, where Hy, is an algebraic subgroup of Dy and m ;(Hp) is
contained in Hy for alll >k > 1.

Proof. Let us prove (1) = (2). Suppose G = G, We obtain {¢r : ¢ € G} = G\, by
Corollary 3.25. Moreover since 5(0) is closed in the Krull topology by construction, G is
closed in the Krull topology.

Let us show (2) = (1). The group G is equal to {¢k : ¢ € G} by hypothesis for
any k € N. We claim G ¢ G. Indeed given ¢ 6 G and k € N there exists nk) € G
such that ¢, = (9(k))x for any & € N since G © L{cpk : ¢ € G}. In particular
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¢ = limg oo n(k) where the limit is considered in the Krull topology. Since G is closed in
the Krull topology, we obtain ¢ € G. The inclusion @(0) C G implies G = 5(0) and hence
G is pro-algebraic. Moreover we obtain G = é(o) = @ G and then G is the form in item
(3) by Lemma 3.21. We just proved (2) = (3).

Finally let us prove (3) = (1). We define H;y, = m ,(H;) for { > k > 1. The group
H;, is algebraic since it is the image of an algebraic group by a morphism of algebraic
groups. Since my =m0 mpy for ' > 1> k > 1, the sequence (Hyy)i>r is decreasing for
any k € N. The sequence stabilizes by the noetherianity of the ring of regular functions of
an affine algebraic variety. We denote Kj, = N> H; . Given | > k > 1 we consider I’ > |
such that K; = Hp; and Ky, = Hy j. Since mp j, = m 5, 0 mp g, we deduce 5, (K;) = Ky, for
all [ > k > 1. The construction implies y_ka = @Hk Thus @Hk is pro-algebraic by
Lemma 3.23. |

Remark 3.27. Proposition 3.26 is very useful to show that certain groups are pro-algebraic.
For example consider a family {G; }]. ¢, of pro-algebraic subgroups of Diff (C™,0). Let us
see that N;jc ;G is pro-algebraic. We have

ﬂ—l,k(ijJ(Gj)l) C ﬂjeJ(Gj)k forall{ > k> 1 and Njeg Gj = @ﬂjeJ(Gj)k.
Since the intersection of algebraic matrix groups is an algebraic group, the group N;c;G;
is pro-algebraic by item (3) of Proposition 3.26.

Remark 3.28. Invariance properties typically define pro-algebraic groups. Item (3) of
Proposition 3.26 provides an easy way of proving such property. Let us present an example.
Consider fi, ..., f, € O, and

G ={p e Diff (C,0): fjop=f, forall 1 <j < p}.
We define
Hy, = {A€ Dy: A(f; +w*™) = fj +mPH! for all 1 < 5 < p}

for k € N. Tt is clear that Hj, is an algebraic subgroup of Dy for k € N. Moreover we have
m(H) C Hy for 1 > k> 1. Since fo¢ — f = 0 is equivalent to f o ¢ — f € m* for any
k € N, the group L&nH , is equal to G. Moreover G is pro-algebraic by Lemma 3.23.

The power of item (3) of Proposition 3.26 is that in order to show that G is pro-
algebraic we do not need to find {¢r : ¢ € G} explicitly; in particular we could have
{¢r : ¢ € G} C Hj. Moreover, it allows us to exploit that a pro-algebraic group can be

expressed in several ways as an inverse limit of algebraic groups.
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Let us check out that the Jordan-Chevalley decomposition holds in the context of

pro-algebraic groups.

Proposition 3.29. Let ¢ € Diff (C™,0) be an element of a pro-algebraic group G. Then
@s, Oy belong to G.

Proof. We have
€ G =G ={peDiff (C",0): ¢}, € Gy for all k € N}.

The transformations ¢ s and ¢y, belong to Gy for any & € N by Chevalley’s theorem.
Thus ¢s = (¢r,s)k>1 and ¢y = (Pku)k>1 belong to @Gk. O

Next we calculate the algebraic closure of a cyclic unipotent group.

Remark 3.30. Let us calculate (¢) for ¢ € ]ﬁu((C",O). We denote G = (¢). Since
¢ is unipotent for any k € N, the group Gy, = <¢k)z is equal to the l-parameter group
{¢% : t € C}. Clearly we obtain

{exp(tlog¢) : t € C} C (¢} .

Let us show the reverse inclusion. An element ¢ of im G is of the form (exp(t; log ¢););>1.
In order to obtain G° = {exp(tlog @) : t € C} it suffices to show that {exp(tlog¢) : t € C}

is closed in the Krull topology. This is a consequence of the injectivity of the map

7 ¢ {exp(tlog¢):teC} — Dy,
exp(tlog ¢) = (exp(tlog ¢))x

for some k € N. The map 7 is trivially injective for any k € N if log ¢ = 0. Otherwise
consider k£ € N such that (log ), # 0. The map 7, is injective since (exp(tlog ¢))r = Id
implies t(log ), = 0 and then ¢ = 0.

Remark 3.31. Let ¢ € ]jii\fu((C", 0). Since j!log ¢ is nilpotent, it is equal to Z;L:_ll 5]“?“6%,
up to a linear change of coordinates where d; € {0,1} for any 1 < j < n. Let us define
ord(zj) =n—1+j for 1 < j <n, ord(0) = oo and then

. n .
ord Z a;z* | = min Zi]-(nf 14+j):a;#0p if Z a;zt # 0.

[i[>1 j=1 [i[>1

The property ord(z1) < ... < ord(z,) < 2ord(z;) implies ord(f) < ord((log ¢)(f)) for any

f € m. The minimum possible order for a monomial is n whereas the maximum possible
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order for a monomial of degree less or equal than j is (2n — 1)j. Since applying log ¢
increases the order, we obtain (log ¢)2"~1i=7+1(m) ¢ m*1, Thus

exp(tlog ¢) = Z ai (t)at, ..., z (/Lf(t):vi

li|>1 i[>1

satisfies af(¢) € C[t] and dega® < |i|(2n — 1) — n for every choice of i and k. The degree
of af is bounded by a linear function of |i]. This property induces a dichotomy: either
exp(tlog ¢) converges only for ¢ in a polar set (that is, a set of logarithmic capacity 0)
or log ¢ converges [17], cf. [22]. A polar set has vanishing Hausdorff dimension and in

particular zero Lebesgue measure. Generically @Z contains (many) divergent elements.

Remark 3.32. Let ¢ € Diff (C™,0) be a semisimple formal diffeomorphism. There exists a
formal change of coordinates 1) € Diff (C™,0) such that Yopop=! = (A\121,. .., Anay) for
some (A1,...,An) € (C*)™ The group (@) is equal to 1~ o Gy o1 (cf. Definition 2.7).

Exercise 3.9. Show the analogue of Proposition 2.12 for formal diffeomorphisms. More
precisely, given ¢ € Diff (C™,0) prove that all elements of <¢5>Z commute with all elements
of (qbql)z and that mz is the group generated by <¢s)z and ((;5“,>Z.

Definition 3.33. Let G be a subgroup of Diff (C™,0). Since Gy, is an algebraic group of
matrices and in particular a Lie group, we can define the conected component Gy, o of the

identity in G. We also consider the set G}, of unipotent elements of Gy.
Definition 3.34. Let G be a subgroup of Dift (C™0). We define
Gy = {p € Diff (C",0) : i € Gip for all k € N}

and
G- = {p € Diff (C,0) : ¢4 € Gy for all k € N}.

The group 68 is the natural candidate to connected component of I'd of G°. Such a
component is an algebraic group in the linear case; the analogue in the pro-algebraic case
is the subject of next proposition. Moreover we will show that membership in 63 can be

checked out on the linear part.

Proposition 3.35. Let G be a subgroup oflgiﬁr (C™,0). Then Gy is a pro-algebraic sub-
group of Diff (C™,0) such that Gy ={p € G~ : 91 € G10}-
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Proof. Let I > k > 1. Since Gy is algebraic, m,(Gi) is algebraic by Proposition 2.14.
The dimension of G = m4(G)) is equal to the dimension of m1(Gio). Since Gy is
connected, m (G ) is connected and hence contained in G, 9. On top of that the algebraic
groups 7 x(Gro) and Gio have the same dimension and Gy is connected, we obtain
m.k(Gro) = Gio (we just proved that given a morphism a : H — H' of algebraic groups
then a(H)y = a(Hp), cf. [3, Chapter 1.1, Corollary 1,.4, p. 47]). In particular the
image by m; of a connected component of G; is a connected component of Gj. The
map 7 induces a map between connected components of G; and connected components
of Gy that is clearly surjective since 7 is surjective by Lemma 3.5. Let us show that
such correspondence is injective. Consider a connected component C of G; such that
m,5(C) = Gio. Then there exists A € C such that m ;(A) = Id. Thus A is unipotent by
Proposition 3.12 and it belongs to G by Exercise 2.10. Obviously we obtain C' = G .

The discussion above implies WZT;(G;C‘,O) = Gy and m(Gro) = G forall | > k > 1.
We deduce 6; ={peCG :p € Gi0}-

Since 58 = l'&lng Gy and m 1, 2 Gg — Gy is surjective for all [ > k > 1, the group
éé is pro-algebraic by Lemma 3.23. |

We prove next that 62 is a pro-algebraic group if G is solvable. The next lemma is

the analogue of Lemma 2.30 for groups of local diffeomorphisms.

Lemma 3.36. Let G be a subgroup oflji?f (C™,0). Then

e exp(tlogy) € G, for all o € G, and t € C.
« G = @z if G is unipotent.
e Suppose G is solvable. Then é;'j is a pro-algebraic normal subgroup 0f§z.

The three first items were proved in [13].

Proof. We have

((G) = max({¢y : ¢ € G}) = max{(Gy) = UG).

The first and third equalities are immediate. The second equality is a consequence of the

first item of Lemma 2.30.
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Given ¢ € G, the group (@) is contained in G~ and it is equal to {exp(tlog ) : t € C}
by Remark 3.30. Since tlog ¢ is nilpotent for ¢ € C, the elements of @z are contained in
éi by Proposition 3.17.

Suppose G is unipotent. Since {¢ : ¢ € G} is unipotent, its Zariski-closure G, is
unipotent for any £ € N by Lemma 2.30. Thus G = @Gk is unipotent by Proposition
3.12.

Suppose G is solvable. The set Gy, is an algebraic normal connected subgroup of
the solvable group Gy for any & € N by Lemma 2.30. We have ﬂ'lTkl(Gk,u) = Gy, for all
I > k > 1 by Proposition 3.12. Since m;1(G;) = G, by Lemma 3.21, hence 7, ;(G14) = Giu
for all I > k > 1. Therefore éi = l'&le,u is a pro-algebraic group by Lemma 3.23.

Moreover since Gy, is normal in Gy, for any k € N, the group éi is normal in G". |
Remark 3.37. Let G be a solvable subgroup of Diff(C",0). Since membership in ég and

G can be checked out in the first jet, these groups have finite codimension in G”. Indeed

the kernels of the natural maps

62 — G]/Gl)u and éz — G]/G])o
are equal to éz and @S respectively by Propositions 3.12 and 3.35. In particular G* /é;’;
is a finite group.

Proposition 3.38. Let ¢ € Diff (C",0). Consider m € Z\ {0} such that ¢™ € (9);.
Then we obtain <¢m>z = WS

Proof. We denote G = (¢). We have ¢ € G} for any k € N by definition of Go.
Proposition 2.24 implies ( Z")Z = Gy for any k € N. We obtain (¢m>z =Gy = @S by

construction of the pro-algebraic closure and definition of Gg. O

We keep reproducing parts of the theory of algebraic matrix groups for formal diffeo-

morphisms. Next we associate Lie algebras to pro-algebraic groups.
Definition 3.39. Let G be a subgroup of Diff (C™,0). We define the set
g={X € X(C",0): X € gy for all k € N}

where gy, is the Lie algebra of G,. We say that g is the Lie algebra of G-.
Suppose G is solvable, we define

gy = {X € X(C",0) : X, € gp, for all k € N}

where gy, is the Lie algebra of Gy,. We say that gy is the Lie algebra of éi
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Remark 3.40. There are several possible definitions of Lie algebra of [ Namely we can
proceed as in Definition 3.39 or we can consider {X € £(C",0) : exp(tX) € G ¥Vt € C}.

We show in next proposition that both choices are equivalent.

The Lie algebra of a pro-algebraic subgroup of Dift (C™,0) shares analogous properties

with the finite dimensional case.

Proposition 3.41 ([13, Proposition 2]|). Let G be a subgroup of ]ji?f((C",O). Then g
is equal to {X € X(C",0) : exp(tX) € G° ¥V t € C} and Gy is generated by the set
{exp(X) : X € g}. Moreover if G is unipotent then the map

exp:g— G
is a bijection and g is a Lie algebra of nilpotent formal vector fields.

Proof. The first statement is a consequence of the definition of Lie algebra of an algebraic
matrix group applied to Gy, for k € N.

Given the map m , : Gy — Gy for | > k > 1 we can consider the map (dm)rd : 91 — 9k
given by the differential of 7, at Id. It is the restriction to g; of the forgetful natural
map Lgy1 — Ly. The map (dm)1q satisfies (dmyp)ra(g1) C gg-

Let A € G;. The image of a small neighborhood U of A in G; is a manifold whose
dimension is the rank of (dm;)rq by the constant rank theorem (the rank of the maps
(dm 1) p for B € G is constant by the homogeneity of algebraic groups). We deduce that
Gy, is the union of countably closed (in the usual topology) sets contained in manifolds of
dimension rk((dm x)rq). Since Gy, is a smooth manifold of dimension dim(gy) we deduce
rk((dm k) 1a) = dim(gy). Otherwise we have rk((dm; ;)rq) < dim(gy) and Gy, is the union of
countably nowhere-dense closed sets; this contradicts the Baire category theorem. Since
(dmyk)ra(g) C gk and both complex vector spaces have the same dimension we obtain
(dm i) ra(81) = gk The last two paragraphs again describe a well-known fact about al-
gebraic groups: the surjectivity of the differential map at Id of a surjective morphism of
algebraic groups in characteristic 0 (cf. [3, Chapter I1.7, p. 105]).

Since g = {X € X£(C",0) : exp(tX) € G for all t € C}, the set {exp(X): X € g} is
contained in Gg. Let us show that Gp is generated by {exp(X) : X € g}. Let ¢ € Gg.
Then ¢ belongs to G1o and as a consequence ¢ is of the form exp(Y1) o...oexp(Y)
for some Y1,...,Y), in g1 by Proposition 2.22. Since all the maps (dm)rq : 91 — gr are
surjective for [ > k > 1, the natural projection lim g = g — g1 is surjective. Thus there
exists X; € g such that it induces the derivation Y; of m/m? for any 1 < j < p. The
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diffeomorphism

P :=exp(—Xp)o...exp(—X1)o¢
has identity linear part by construction. We are done since log belongs to g by Remark
3.30.

Suppose G is unipotent. Hence G is unipotent by Lemma 3.36. The Lie algebra g;
of the unipotent group G consists of nilpotent matrices. Since @gk = g we deduce that
all elements of g are nilpotent by Remark 3.16. The map exp : g — G is injective since
exp : £x(C",0) = ﬁfu((C",O) is injective (Proposition 3.17). Finally exp : g — G is is
surjective since log ¢ € g for any ¢ € G by Remark 3.30. O

Remark 3.42. The term “connected component of the identity of G*” for Gy is completely
justified. On the one hand éz/éé is a finite group by Remark 3.37. On the other hand
every element ¢ of éé is of the form exp(Xj) o ... o exp(Xy) where X1,..., X} € g by
Proposition 3.41. Hence exp(tXi)o...oexp(tX)) describes a path connecting the identity
with ¢ in Gg when ¢ varies in [0, 1].

Corollary 3.43. Let G be a solvable subgroup ofﬁ_i?f (C™,0). Then gy 1is a complex Lie
algebra of nilpotent formal vector fields such that

exp: gy = G,
is a bijection.

Proof. Denote H = éz. Then H is a solvable unipotent pro-algebraic group by Lemma
3.36. Since gy is the Lie algebra of H, the result is a consequence of Proposition 3.41. [

3.6 Normal forms

Let us present in the next sections some simple consequences of the previous constructions.
They are easily deduced from the Jordan-Chevalley decomposition and the properties of
pro-algebraic groups.

Let ¢ € Diff (C,0). We can obtain a weak formal normal form for ¢ by linearizing its
semisimple part. Next, we use this strategy to obtain the theorem of formal diagonalization

of local diffeomorphisms with almost no calculations.

Proposition 3.44. Let (A1,...,\,) € (C*)™. Then there exists a non-semisimple ¢ €
Diff (C",0) such that j'¢ = (Mx1,..., \nxn) if and only if there exists a multi-index
i€ (NU{0})™ such that |i| > 2 and X = \; for some 1 < j < n.
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Proof. We denote L(z1,...,2,) = (A\121, ..., \y@y). Let us show the necessary condition.
We have that for
¢i=Lo(x1,...,xj_1,2 + 25 xj41,. .., 20)

the right hand side is its Jordan-Chevally decomposition since the diffeomorphisms in the
right hand side commute. Hence ¢ is not semisimple.

Suppose there exists a non-semisimple ¢ € Dift (C™,0) with j'¢ = L. By Proposition
3.13 (and its proof) there exists ¢ € Diff (C™,0) such that jl¢» = Id and Yo ps0p~! = L.
We denote ¢, = 1) o ¢, 0 tp~1. The formal diffeomorphism

Ou(®1,. . p) = | 21+ Z all(t)alci7 e X F Z a;"(t)azrz
[i[>2 li[>2
is non-trivial and commutes with L. Hence we obtain A\ = A;j for any multi-index i such

that ai #0. |

Let us consider the case n = 1. Fix A € C*. Then any element ¢ of Diff (C,0) (or
Dift (C,0)) such that j'¢ = Az is formally linearizable if and only if \ is not a root of the

unit.

3.7 Transferring properties to infinitesimal generators

Let us show a well-known property of unipotent diffeomorphisms. The result can be easily
proved without considering pro-algebraic groups, but anyway the theory provides an easy
conceptual proof.

Lemma 3.45. Let ¢, € ]SRTU((C", 0). Then [log ¢,log®] = 0 if and only if ¢ commutes
with .

Proof. The definition of Lie bracket implies that [log ¢,log ] = 0 if and only if
exp(tlog ¢) o exp(slog¥) = exp(slog ) o exp(tlog @)

for all ¢t,s € C. This implies immediately the sufficient condition. Let us show the
necessary condition.

The centralizer Z(¢) = {n € Dift (C™,0) : Ypon = no)} is a pro-algebraic group
containing ¢ (cf. Remark 3.28). In particular it contains {¢) . Thus we obtain

1 o exp(tlog ¢) = exp(tlog ¢) o ¢

for any ¢ € C. We deduce exp(tlog¢) o exp(slog) = exp(slogt)) o exp(tlog ¢) for all
t,s € C analogously. Therefore [log ¢,log ] vanishes. O
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3.8 First integrals

Let us see how the theory of pro-algebraic groups can dramatically simplify some proofs

regarding invariance properties.

Proposition 3.46. Let us consider n elements f1,..., fn of the field of fractions of On.
Suppose dfy A ... Ndfy £ 0. Then the group

G = {¢ € Diff (C",0): fjop=f; for all 1 <j <n}
is finite.

Proof. The group G is pro-algebraic. This result is proved for fi,..., f, € O,, in Remark
3.28. The general case can be showed analogously.

Consider an element X = 7", a;0/0x; in the Lie algebra L(G) of G. By definition
we have

fioexp(tX)— f;

fijoexp(tX) = fjforallt e C = X(fj):%im0 . =0
—

for any 1 < j < n. The property X(f;) =0 for any 1 < j < n is equivalent to

oh  ONn ofi
Ox1 Ozro "' Ozn ai 0
Of Of Of>
dxy Oxro """ Oxp az _ 0
Ofn Ofn 9fn
oz Ozry " Ozp an 0

Since df; A ... Adf, #Z 0, the n X n matrix in the previous equation has a non-vanishing
determinant and then X = 0. Hence L(G) is trivial and ég is the trivial group by
Proposition 3.41. Since G/ég is finite by Remark 3.37, G is finite. d0
3.9 Finding invariant curves

Let us see that the Jordan-Chevalley decomposition can be used to find invariant curves
for a local diffeomorphism or one of its iterates.

Let us consider first an example. We define
o(z,y) = (iye™™, ize™).

Does ¢ have invariant curves? And what about ¢” where p € N7
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Let X = zy(zd/0x — yd/dy). Since
B(2,9) = (39, 2) o (™, ye~) = (w6, ye~) o (iy, iz),

we have ¢5(z,y) = (iy,iz) and ¢y (x,y) = (ze™,ye ) = exp(X). Consider p € N and a
germ of curve v at (0,0) such that ¢*(y) =~. Then G, = {¢) € Diff (C2,0) : (y) =~} is
a pro-algebraic group containing ¢”. Since ¢% o ¢4, is the Jordan-Chevalley decomposition
of ¢P, we obtain ¢%, ¢} € G, by Proposition 3.29. Remark 3.30 implies

(05 =(0u)” = {exp(tlog ¢y) : t € C:;

in particular ¢, € G, and v is an invariant curve of the formal vector field log ¢,,. Since
logé, = X and X(zy) = 0, we deduce that the axis are the unique curves that are
invariant by log ¢,,. Therefore both axis are 2-periodic and no other curve is invariant or
even periodic by ¢.

Let us show that the periods of periodic curves are uniformly bounded.

Proposition 3.47. Let ¢ € Diff (C™,0). There exists p € N such that ¢P(y) = for any
formal periodic curve vy. Moreover every formal periodic curve is invariant if ¢ € @g

Proof. Let p € N such that ¢P € <(Z>)(Z) Given a formal periodic curve = consider the
pro-algebraic group G, = {n € Diff (C™,0) : n(y) = v}. There exists ¢ € N such that
¢P4 € G. In particular we obtain (o7 G,. Since (gp0y” = @S by Proposition 3.38,
we deduce ¢ € G,,. |

4 Derived series

Solvable subgroups of Diff (C", 0) provide geometrical actions on a neighborhood of a point
by solvable groups. A natural question is how the dimension n restricts the complexity of
such actions. A simpler problem is studying wether or not the derived lengths of solvable
subgroups of Diff (C™,0) is bounded by a function of n and if that is the case then finding
the sharpest upper l)oound. Since a pro-algebraic group G of Diff (C™,0) and its pro-

algebraic closure 6(0

7(()0) can be understood in terms of its Lie algebra, it is natural to consider this problem

have the same derived length by Lemma 3.36 and the properties of

in the context of pro-algebraic groups.
We will see later on that the derived group of a pro-algebraic subgroup of Diff (€™,0)
is not necessarily pro-algebraic (section 5). We need to define the analogue of the derived

group in the context of pro-algebraic groups.
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Definition 4.1 ([13]). Let G be a subgroup of Diff (C™,0). By induction we define the
j-closed derived group G of G as the closure in the Krull topology of [é<]71),é<]71)] for

any j € N.

Let us provide an alternate definition of the closed derived group. A pro-algebraic
subgroup G of Dift (C™,0) is a projective limit LmkeN Gy, of algebraic groups and hence it
makes sense to consider the projective limit MkeN G;cl) of the derived groups. Such group

is indeed the closed derived group of G.

Proposition 4.2. Let G be a subgroup of]ji?f (C™,0). Then é(j) is a pro-algebraic group
for any j € NU{0}. More precisely {¢y : Lp € G(])} is the algebraic matriz group Gm for
all j e NU{0} and k € N and we have el = lim G(]) for any j € NU{0}.

Proof. The derived group of a linear algebraic group is algebraic (cf. [3, 2.3, p. 58]). As
a consequence G,(Cj ) is algebraic for all j € NU{0} and k € N.

We define GY) = {¢ € Diff (C™",0): ¢ € G,(Cj) for all k € N}. Since m,(G;) = Gi, we
obtain m,k(ng)) = G](j) for all [ > k > 1 and j > 0. The group G is pro-algebraic for
any j > 0 by Lemma 3.23.

The remainder of the proof is devoted to show ¥ = G for any j > 0. It suffices to
prove the result for j = 1. The inclusion Y ¢ GO is clear.

Let ¢ € GY. Fix k € N. Then ¢k is a product of commutators of elements of
G. Since l'&n]_EN G; — G}, is surjective by Corollary 3.25, we obtain that there exists
n(k) € (G*)Y such that (n(k))x = pr. Therefore ¢ is the limit in the Krull topology of
the sequence (17(k))g>1. We are done since the Krull closure of (G*)(") is equal to a by
definition. d0

The next lemma provides the analogue of the derived series for pro-algebraic groups.

Lemma 4.3. Let G be a subgroup of]ji?f (C™,0). Then é(j) is the closure in the Krull
topology of the j-derived group of é(o) for any 7 € N. Moreover, the series ...<lé(m) <

..<G ! <1é(0) is normal.

Proof. Since the derived series of a group is normal and G L G(] ) by Proposition
4.2, the series ... < @™ 4. 4G 4G is normal. Analogously as in Proposition 4.2
we can show that G is contained in the closure of (G*)Y in the Krull topology. Since
(GHY) ¢ é(j), we deduce that G is the closure of (G*)) in the Krull topology. O
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Remark 4.4. The previous results justify the definition of @(j). On the one hand @(j) =
{Id} is equivalent to GV) = {Id} by Lemmas 3.36 and 4.3. On the other hand the group
E(j) is more compatible with the pro-algebraic nature of G~ than (@Z)(j ) by Proposition
4.2.

Let G be a pro-algebraic subgroup of Dift (C™,0). Suppose that G is connected, i.e.
G = @3. We want to obtain the Lie algebras of the closed derived groups of G. In order

to complete this task we introduce some definitions for Lie algebras of formal vector fields.

Definition 4.5. The derived Lie algebra g(!) (or [g,g]) of a complex Lie algebra g is the
complex Lie algebra generated by the Lie brackets of elements of g. The derived series of
g is defined by setting g(® := g and g@) := [gU~1) gU=Y)] for 5 > 0.

Let us introduce the closed derived series of a Lie algebra.

Definition 4.6 ([13]). Let g be a Lie subalgebra of £(C" 0). We denote by g® the
closure of g in the Krull topology. We define the j-closed derived Lie algebra ﬁ(j ) of g as
the closure in the Krull topology of [ﬁ(j‘l).,ﬁ(j_l)] for any j € N.

In next proposition we describe the closed derives series of a Lie algebra g of a pro-
algebraic group G in terms of the closed derived series of G. Moreover we interprete the

closed derived series of g as a “projective limit” of derived series.

Proposition 4.7. Let G be a subgroup ofﬁf (C",0) such that G* = Gg. Let g be the Lie
algebra of G°. Then ﬁ(j) is the Lie algebra of 60) and é(j) coincides with its connected
component of Id for any j € N. Moreover we have ﬁ(j) = @keN g}cj) for any j € NU{0},
where gy, is the Lie algebra of Gy, for any k € N.

Proof. Since we work in characteristic 0 and Gy, is a connected algebraic group by definition
of @S, we have that ggj ) is the Lie algebra of the connected algebraic group G,(Cj ) for every
j € N [3, Proposition 7.8, p. 108].

The Lie algebra

) = {X € X(C",0): X} € g;cj) for all k € N}
is the Lie algebra of 60) since
¥ = {pe Diff (C™,0) : ¢ € G§j) for all k € N}

by Proposition 4.2. It suffices to prove ﬁ(j) = g9 for every j € NU {0}. The property
§9) < g\ is obvious for every j € NU {0}. Let us show the other inclusions.
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Consider the homomorphism (dmy41,%)1d : 9k+1 — g defined in the proof of Proposi-
tion 3.41. Since (dmk41.%)1d(8k+1) = 9k for every k € N, the natural projection limg; — gk
is surjective for any k£ € N. Analogously as in the proof of Proposition 4.2 given any
X € §9 and k € N there exists X (k) € g such that X (k) = X;. Hence X is the limit
of the sequence (X (k))rey and by definition X belongs to g¥). We obtain §¢) c ) and
then §@) =g\ for any j > 0. O

Given a connected Lie group G with Lie algebra g, the Lie algebra of G() is the derived
Lie algebra g(Y). Proposition 4.7 is an analogue of such result adapted to the context of
connected pro-algebraic groups.

The next lemma is the analogue of Lemma 4.3 for Lie algebras.

Lemma 4.8. Let G be a solvable subgroup of]ji?f (C™,0). Let g be the Lie algebra of G .
Then ﬁ(j) is the closure in the Krull topology of ¢@) for any j € N. Moreover we have
@*ﬁ(j) = g(j) for all p € ey and j € N. The series

g™ agWag® =4
is normal.

Proof. Since @gl — g; is surjective for any j € N, g9 is contained in the closure in
the Krull topology of g/) for any j € N. Since g&) ¢ §¥) and ﬁ(j) is closed in the Krull
topology, we deduce that §<j ) is the closure of g9 in the Krull topology for any j > 0.
The property p.g = g for any ¢ € G" is a consequence of g being the Lie algebra
of G°. Since the Lie subalgebras of the derived series of g are characteristic, we obtain
cp*g(j) = gm for all ¢ € G” and j > 0. We get gp*ﬁm = §(j) for all ¢ € G and j > 0 by
taking the Krull closures.
)

Since ﬁ(j ) = @kel\! gy’ for any j > 0 and the derived series are normal, the series
ag™a. . ag®Pag® =4
is normal. O

The next proposition establishes that the derived length of a connected subgroup of
Diff (C™,0) and its Lie algebra coincide.

Proposition 4.9. Let G be a solvable subgroup of]ji?f (C",0) such that G° = G. Then
the derived lengths of G and g coincide.
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Proof. Fix j > 0. We have GU) = {Id} if and only if (G( ))(j) by Lemma 3.36. Since the
closure of (6(0))< 7) in the Krull topology is equal to G(]) by Lemma 4.3, we obtain G) =

{Id} if and only if [ex = {Id}. The Lie algebra of a9 s equal to §9) by Proposition 4.7;
moreover exp(g Y )) generates G( ) since this group coincides with is connected component
of Id (Proposition 4.7) and Proposition 3.41. Clearly g9 = {Id} if and only if §¥) = 0.
Moreover g( 9 =0 if and only if ﬁ(j ) = 0 since ﬁ(j ) = 0 is the closure in the Krull topology
of g¥) by Lemma 4.8. We deduce G = {Id} if and only g\¥) = 0 for any j > 0. O

This text is intended to be elementary and we will not provide the details of the calcu-
lations of sharp upper bounds of the derived length of solvable subgroups of Diff (C", 0).

Anyway the previous ideas can be used to show the following results.

Theorem 4.10 ([13]). Let G be a solvable subgroup Of]SET (C",0) such that Gy = G .
Then £(G) < 2n. Moreover there exists a subgroup H of Diff (C",0) such that Hy = H
and ((H) = 2n.

Theorem 4.11 ([13]). Let G be a unipotent solvable subgroup ofﬁf (C",0). Then we
have €(G) < 2n — 1. Moreover there exists a unipotent subgroup H of Diff (C™,0) such
that ¢(H) = 2n — 1.

The next theorem is classical. As a generalization we can calculate sharpest upper
bounds of the derived length of solvable subgroups of Diff (C™,0) for n <5.

Theorem 4.12 (cf. [11], [9, Theorem 6.10, p. 85]). Let G be a solvable subgroup of
Diff (C,0). Then £(G) < 2. Moreover there exists a subgroup H of Diff (C,0) such that
U(H)=2.

Theorem 4.13 ([21]). Fiz2 <n <5. Let G be a solvable subgroup of Diff (C™,0) . Then
U(G) < 2n+1. Moreover there exists a subgroup H of Diff (C*,0) such that £(H) = 2n+1.
5 Pro-algebraic groups in dimension 1

The theory of pro-algebraic groups is powerful but so far we exhibited just a few examples
of pro-algebraic groups. The situation is very simple in dimension 1 where pro-algebraic
groups can be characterized. We classify all pro-algebraic subgroups of Diff (C,0) in this

section.
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We denote by Ty the centralizer of pz in Dift (C,0) where p is a primitive d-root of

the unit. An element ¢ of T} is of the form

o(z) =z + Z Apzldtt
k=1

where A € C* and A\ € C for any k > 2.

Definition 5.1. Consider a formal vector field X = z;o:p aj+1zj+1% € %(C, 0) such that
ap+1 # 0. We define ord(X) = p.

Remark 5.2. Given X,Y € X(C,0) we have
ord[X,Y] = ord(X) + ord(Y)
if ord(X) # ord(Y).

Theorem 5.3. Let G be a pro-algebraic subgroup of Iji\ﬁ'((C,O). Then up to a formal

conjugacy G is of one of the forms:
e G={)\z: )€ H} where H is an algebraic subgroup of C*.

. G:{(Akz)oexp(t%%) :keZ,te(C} where p > 1, W =1 and A € C.

e G = {()\z) o exp (tzp‘*'l%) :X€EH,t€C} where p > 1 and H is an algebraic sub-
group of C*.

o G C Ty for some d > 1, there exists ko > 0 such that {¢ryq : ¢ € G} is algebraic and
G = {¢ S Td : ¢k0d S Gkgd}'

The three first possibilities correspond to solvable pro-algebraic groups. Notice that in
the last possibility the subgroup {¢ € Ty : j*0%¢ = Id} is contained in G. If d = 1 then G
contains all the elements of Diff (C,0) whose order of contact with the identity is higher
than ko.

Proof. Since G is pro-algebraic, the group j!G is algebraic and then either a finite cyclic
group or equal to {Az : A € C*}. Suppose that G is solvable. The classification of solvable
subgroups of Diff (C,0) (cf. [11], [9, section 6Bs, p. 89]) implies that G is of one of the
forms describe in the first three items.

Suppose G is non-solvable. The set G, is a pro-algebraic group since it is the inter-
section of the pro-algebraic groups G and Dift 1(C,0) (Remark 3.27). The Lie algebra gn

236



ALGEBRAIC PROPERTIES OF GROUPS OF COMPLEX ANALYTIC LOCAL DIFFEOMORPHISMS / JAVIER RIBON

of G, consists of formal vector fields with vanishing linear part and is closed in the Krull
topology by Corollary 3.43. We denote K(G) = {ord(X) : X € gy} and d = ged(K(QG)).
The formal centralizer of G is a cyclic group of cardinal d by a theorem of Loray [12].
Up to a formal change of coordinates we can suppose that the centralizer of G is equal to
(e*™/42) and then G C Ty. The set K(G) satisfies k1 + ky € K(G) for all ki, ke € K(G)
such that k1 # ko by Remark 5.2. Hence it is simple to see that K(G) contains all the
natural numbers of the form kd for some ky € N and any k > ko. Since gy is closed in
kod+15(24) 2 Thus G
contains all formal diffeomorphisms of the form z + z%0%+1g(2¢). The group {Prod : ¢ € G}

the Krull topology, it contains all formal vector fields of the form z

is algebraic by Proposition 3.26. The inclusion G C {¢ € Ty : ¢rga € Grod} is clear. Let
us show the reverse inclusion. Given an element ¢ € Ty such that ¢ q € G,a there exists
n € G such that Ng,q = dr,a since G is pro-algebraic. The formal diffeomorphism 771 o ¢
is of the form z + 2%0915(2?) and hence it belongs to G. Since 7 belongs to G, ¢ belongs

to G. |

The pro-algebraic solvable subgroups of Diff (C,0) have the finite determination prop-
erty and their dimension is 0, 1 or 2. On the other hand up to ramification a non-solvable
pro-algebraic subgroup of Diff (C,0) has finite codimension. More precisely G has finite
codimension in Ty for some d € N.

The derived group of a pro-algebraic subgroup of Diff (C™,0)

is not necessarily pro-algebraic

We justified that the closed derived series of a pro-algebraic group is the right concept
instead of the derived series in section 4. But a priori these series could be the same,
making the introduction of the closed derived series redundant. We show in this section
that in general the series are different.

The closed derived series and the derived series coincide for any pro-algebraic group if
and only if the derived group of a pro-algebraic group is always pro-algebraic. We exhibit
in this section an example of a pro-algebraic subgroup G of Diff (C3,0) whose derived
group is not pro-algebraic.

Consider

0 0 0
—r— Y =y — 7 =a—.
xay, yé)z and xaz

We have [X,Y] =Z, [X,Z] =0and [Y, Z] = 0.

X Y
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Let us consider sequences (X, )n>1 and (Y )n>1 of vector fields defined in a neighbor-
hood of 0 in C? such that X; = P;X, Y; = Q;Y where P;,Q; € C{z} for any j € N.
Moreover we suppose that the multiplicity of P; and @; at 0 tend to co when j — co. We

also want to guarantee the independence condition

3 NkPiQu=0 = Ajx=0 forall j,k>0 ©)
1<),k
where the left hand side is a linear combination with complex coefficients. The expression

Zlgj,k ;.1 P; Q) makes sense since P;Qy, tends to 0 in the Krull topology when j+k — oo.

Lemma 5.4. There exists a choice of homogeneous polynomials (P;)j>1 and (Qj)j>1 such
that limj_yoo Pj = 0 = limj_yoo Q; in the Krull topology and deg(P;Qy) # deg(PyQur) if
(4, k) # (§', k). In particular the independence condition (9) holds.

Proof. We define P = x and @ = x. Let us define P; = 2% and Q; = zb for cer-
tain sequences (a;)j>1 and (b;);>1 of natural numbers. Suppose that we already defined
P1,Q1,...,P;,Q; for j > 1. We define

aj+1 = max deg(PQ;) and then bjy = deg(PpQ).
1<k,I<)

max
1<k<GH1, 1<I<5

Notice that (a;j);>1 and (b;);>1 are strictly increasing.
We claim that deg(P;jQr) # deg(Py Q) if (4, k) # (4, k"). We define

¢jr = (max{2j — 1,2k}, min{2j — 1, 2k}) for j,k € N.

Notice that (j,k) # (j/,k') implies ¢ # cj . Moreover if ¢ < ¢jrp in the lexico-
graphical order then we obtain deg(P;Q) < deg(PjQp) by our choice of (a;);>1 and
(bj)j>1-

The equation 215 ik AjxPjQr = 0 implies \;; = 0 for all j, k& > 1 since all monomials
P;Qy with j,k > 1 have different degrees. |

Definition 5.5. We denote lim*

n—00

W,, = W if the sequence (W), >1 converges to W in
the Krull topology.

Consider the sets g, C i‘N((C:;, 0) defined by

o oo
g={X¢€ %N(C?’,O) of the form Z)\ij + Z;LkYk + Z Vit [ Xm, Y1}
j=1 k=1 m,l>1
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and

h={Xe€ Z%N(C3,O) : X is of the form Z Y[ X, Y1}
m,l>1

where A;, p1; and 7, ; are complex numbers.

Lemma 5.6. g is a step-2 nilpotent complex Lie algebra. Moreover § is an ideal of g
contained in the center of g such that gV C § and Y is the closure of gV in the Krull
topology.

Proof. Let Wi, Wy € g. We have

Wn = Z )\J,nX] + Z Nk:,nyk + Z 'Ym,l,n[va YH

Jj=1 k=1 m,l>1
for n € {1,2}. The vector field
(W1, Wal = > (Ajpna — Aj2in) (X5, Y]
Jk>1

belongs to g. The previous formula implies [Ws, [W1, Wa]] = 0 for all Wy, Wa, W3 € g, the
inclusion of h in the center of g and g ) ¢ h. The Lie algebra g is step-2 nilpotent since
gW) is contained in the center of g.

Let us prove that b is closed in the Krull topology. It suffices to show that given a

Wy = Z ’Ym,l.an(m)Ql(x)l‘a*

m,i>1

sequence

in g such that hmn oo Wi = W then the W belongs to . Since the degrees of the
monomials P, (z)Q;(x) are pairwise different, there exists a unique sequence (Ypm1)m,i>1
such that Zml>l Y i Pm (2)Q(x)x converges to >, i1 Ym, i Prm(2)Q(x)z in the Krull
topology when n — o0o. The vector field W = 3, 1~y ¥, 1 Pm(2)Qi(2)20/0z belongs to b.
Notice that [X,,, Y;] belongs to g for all m, 1 > 1. Given an element Zm,l>1 Y i [Xm, Y]
of b the elements Y, ;1. Ym,i[Xm, Y] belong to g™ and converge to > vm,l[E(,,l, V)] when
k — 00. We deduce that b is contained in the closure of g») in the Krull topology. Since
g C  and b is closed, b is the closure of g1, |

Lemma 5.7. The complex Lie algebra g is closed in the Krull topology.
Proof. 1t suffices to show that given a sequence

Wy = Z/\J,HP +Zliank + Z Vmtn P (%) Qy (2 )z%

m,l>1
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in g such that lim* , W, = W then W belongs to g. Since lim* ,  W,(y) = W(y)
and (deg(Pj))j>1 is strictly increasing, there exists a unique sequence (Aj);>1 such that
limy, o Z] 1 AinPi(x) = Z?il AjPj(z). We obtain W(y) = Z;il AjP;j(z)x.  Analo-

Wn(z) _ W (2)
Toy T oy

gously, by noticing hmn o , we deduce the existence of a unique sequence

(k) k>1 such that
nlgg() Z Wi Qe (z Z Q. (x Uaz

The previous discussion implies that the series Z 151 Ymn P (2)Qi(7)x converges in
the Krull topology when n — oo. Since b is closed in the Krull topology by Lemma 5.6,
there exists a unique sequence (Y, i)m,>1 such that Zm 11 Ymiln P, (2)Qi(z)x converges
t0 32, 151 Ym,iPm(2)Qi(2)z in the Krull topology when n — co. The vector field

W = Z/\ Pj(x 1—+Zquk DY %n‘,sz(:v)Qz(fﬂ)wa3

m,l>1

belongs to g. |

Proposition 5.8. The set G := exp(g) is a pro-algebraic unipotent subgroup ofljii\f (C3,0)

consisting of tangent to the identity elements.

Proof. Every element of g has order of contact at least 2 with 0 and then every element
of GG is tangent to the identity.

Since the Lie algebra g is step-2 nilpotent, it can be proved that G is a group by
Baker-Campbell-Hausdorff formula. It is very easy to calculate exp(W) for W € g since
W(z) =0, W2(y) = 0 and W3(z) = 0. It can be checked out that G is given by algebraic
equations in every space of jets and hence {¢) : ¢ € G} is an algebraic group for any
k € N. Moreover since g is closed in the Krull topology by Lemma 5.7, G is closed in the
Krull topology. As a consequence G is pro-algebraic by Proposition 3.26. |

Our goal is proving that GW is not a pro-algebraic group. In order to accomplish such
a task let us describe log(G(1)).

Proposition 5.9. The set log(G(l)) is equal to the Lie algebra gV, Moreover g(l) coin-
cides with the set of formal vector fields of the form

logd=> > NjrXj, Y Yl (10)
k=1

r=1 j=1

where s > 0 and \j,, g, € C for all j,k>1 and 1 <r < s.
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Proof. Consider elements

¢r = exp Z )\J,,‘XJ + Z Hk-,ryk + Z "Ym,l,r[Xnu YYI]

Jj=1 k=1 m,l>1

of G for r € {1,2}. Since g" is contained in the center of g we obtain
[ee) o0
log[¢1, ¢o] = Z/\j1X37zuk2Yk D X2 X5, >k Yal- (11)
j=1 k=1

Then every commutator of elements of G is of the form (10). Since g™V is contained in

the center of g, we obtain

log([¢1,¢1] 0. 0 [ba, 1)) = > log ([, ¥r]) (12)

r=1

for all ¢y, 11, ..., ds, s € G. In particular every element of log(G()) is of the form (10).

Every element ¢ of the form (10) with s = 1 can be obtained by considering Aj» = 0
for all 7 > 1 in Equation (11). We get a general element of the form (10) by applying
Equation (12). O

The next step is showing that g(») is not closed in the Krull topology.

Proposition 5.10. The element > ;2,[X;, Y]] belongs to the closure of o in the Krull
topology but it does not belong to g™,

Proof. Suppose that we have

DXV =D D N XG> Vil (13)
h=1

=1 r=1 j=1

We denote A, = Z]Oil N Xj and By = Y72 pk Y.

We can suppose up to multiply A, and B, by complex numbers that Ay, € {0,1} for
any 1 < r < s. The independence condition (9) implies [Xth:l B,] = [X1,Y1] and
then Z/\wzl B, =Y;. Consider 1 < rg < s such that A,, = 1. By replacing B,, with
Y1 — 35, =1, rgro Br in Equation (13) we obtain

[e o)
SNXuvl= > (A= Ay, B+ Ay, - Xi Y+ Y [A Bl
=2 A1r=1, r#ro A1,r=0
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Hence >;2,[X;, Y]] is of the form

Sy = eyl + Y16, Dy
1=2 r=2

where C, = Z;iz )‘;‘,rXJ' and Dy = Y07 pif, Yy, for all 1 <r <'s. We define D; = Y;. We
can suppose (i1, € {0,1} for any 2 <r <'s. We get Zu’l —1 Cr = 0 by the independence

condition. We obtain

oo
Nixuvl= Y [C.D, -]+ Y (G, D). (14)
=2 =1, 12 =0

All the coefficients of X7 in C, vanish for 1 < r < s. Moreover the coefficient of Y7 in
D, —-Y,is0if u’l‘, =1 and r > 2 whereas the coefficient of Y7 in D, vanishes if u’u =0.
The right hand Side of Equation (14) has s — 1 terms whereas the right hand Side of
Equation (13) had s terms. By repeating this process a finite number of times we deduce
that there exists lo € N such that >, [X;, Y]] = 0. This contradicts the independence
condition. In particular we deduce that 2, [X;, Y]] is not of the form (13) and hence it
does not belong to g™).

On the other hand it is clear that Z{Zl[Xl,Yl] belongs to gt) for any j > 1. Since
S XLy = lim;?_>OO Z{zl[Xl, Y}], the vector field Y ;°;[X;, Y]] belongs to the closure of
g in the Krull topology. |

Proposition 5.11. The group G is not pro-algebraic.

Proof. Tt suffices to show that G!) is not closed in the Krull topology. We are done since
GM = exp(gM) and gV is not closed in the Krull topology by Proposition 5.10. O
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