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Algebraic properties of groups of complex analytic local diffeomorphisms

1 Introduction

We study in these notes the algebraic properties of groups of holomorphic local diffeo-

morphisms. In this spirit we introduce the basic notions of the theory of pro-algebraic

groups. Pro-algebraic groups are the analogue of algebraic linear groups in the infinite

dimensional setting of groups of holomorphic local diffeomorphisms. They are very useful

to study properties that determine groups defined by algebraic equations in every space

of jets.

Let us indicate some examples of the study of algebraic group properties that can

be found in the literature. The first example is the study of integrability properties of

holomorphic foliations. Given a holomorphic foliation and a leaf we obtain a holonomy

group as an image of a representation of the fundamental group of a leaf. It is possible to

relate the properties of the derived series of these groups with existence of first integrals

or integrating factors. Initially this point of view was developed to study codimension

1 foliations [15, Mattei-Moussu], [16, Paul]... and it has been applied more recently to

one-dimensional foliations [18, Rebelo-Reis] [4, Câmara-Scardua]...

Another example is provided by groups of real analytic diffeomorphisms of compact

surfaces. The properties of groups of local diffeomorphisms are crucial to show that any

nilpotent group of real analytic diffeomorphisms of the sphere is always metabelian, i.e.

its first derived group is abelian [7, Ghys]. It is interesting that algebraic properties can

be exploited to deduce dynamical properties of groups [19, Rebelo-Reis] [20]. Other ap-

plications of the algebraic techniques are the study of the existence of faithful analytic

actions of mapping class groups of surfaces on surfaces [5, Cantat-Cerveau], local intersec-

tion dynamics [23, Seigal-Yakovenko] [2, Binyamini], derived length [13, Martelo-Ribón]

[21]...

We try to give a glimpse of the power of the theory of pro-algebraic groups of formal

diffeomorphisms. We lay the groundwork for the study of the derived length of solvable

subgroups of local diffeomorphisms in section 4. The fruits of this approach are the sharp

bounds for the derived length presented in the results at the end of section 4. We did not

prove such theorems in order to keep the text as elementary as possible. The text contains

other examples of the utility of pro-algebraic groups in sections 3.6, 3.7, 3.8 and 3.9 that

hopefully will motivate the reader. Sometimes we provide a more conceptual interpretation

of well-known properties. But we also give very simple proofs of sophisticated results. For

instance we show that a group of local diffeomorphisms in dimension n whose elements

leave invariant n independent first integrals is necessarily finite (cf. Proposition 3.46).
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199

AlgebrAic properties of groups of complex AnAlytic locAl diffeomorphisms / JAvier ribón



J. Ribón

Another good application is the uniform bound of the period of periodic analytic curves,

i.e. invariant by an iterate of a fixed local diffeomorphism.

Let us outline the notes. Section 2 is devoted to explain basic properties of linear

groups and to make the reader familiar with these concepts before generalizing them in

the setting of local diffeomorphisms. We introduce pro-algebraic groups, explain their

properties and how to find examples in section 3. We study the properties of the derived

series of a group of local diffeomorphisms in section 4. We define an analogue of the

derived series that is more suitable for algebraic groups than the derived series itself and

study the properties of a group in terms of its Lie algebra. We classify the pro-algebraic

subgroups in dimension 1 modulo formal conjugacy in section 5. Finally we provide an

example of a pathological phenomenon of pro-algebraic groups in section 5.

2 Linear groups

We study the algebraic structure of groups of local complex analytic diffeomorphisms. Our

point of view involves applying techniques of linear algebraic groups to obtain analogues for

groups of local diffeomorphisms. In the next section we introduce linear algebraic groups

and stress some properties that will be revisited later on in the context of diffeomorphisms.

Let us consider subgroups of the linear group GL(n,C). The elements of GL(n,C) can
be considered as points in Cn2

by identifying each matrix with its list of coefficients. In

this way it makes sense to consider the algebraic closure G
z
of a subgroup G of GL(n,C).

The z superindex stands for Zariski-closure.

Proposition 2.1. Let G be a subgroup of GL(n,C). The algebraic closure G
z
of G in

GL(n,C) is a group.

A proof of this result can be found in [3, Proposition 1.3(b), p. 47].

Let us calculate some examples so that we get familiarized with the algebraic closure.

It is natural to start our study with cyclic groups.

Definition 2.2. Let A ∈ GL(n,C). We say that A is unipotent if A − Id is nilpotent or

equivalently if spec(A) = {1}.

190 VIII Escuela Doctoral Intercontinental de Matemáticas PUCP - UVA
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2.1 Example

Let

A =




1 0 0 0 0 0

1 1 0 0 0 0

0 1 1 0 0 0

0 0 0 1 0 0

0 0 0 1 1 0

0 0 0 0 0 1




= exp




0 0 0 0 0 0

1 0 0 0 0 0

−1/2 1 0 0 0 0

0 0 0 0 0 0

0 0 0 1 0 0

0 0 0 0 0 0




.

Let us denote by B the matrix in the right hand side so that we have A = exp(B). The

matrix B is nilpotent whereas A is unipotent. Let us calculate the one parameter group

{exp(tB) : t ∈ C}. We have

exp(tB) =




1 0 0 0 0 0

t 1 0 0 0 0
t2−t
2 t 1 0 0 0

0 0 0 1 0 0

0 0 0 t 1 0

0 0 0 0 0 1




.

Clearly {exp(tB) : t ∈ C} is an algebraic group given by

ajj = 1 for all j ∈ {1, . . . , 6}, a21 = a32 = a54, a31 =
a221 − a21

2

and aij = 0 for any coefficient that does not appear in the previous equations.

Since exp((s+ t)B) = exp(sB)exp(tB) for s, t ∈ C, we deduce that Ak = exp(kB) for

any k ∈ Z. Let P be a polynomial on the coefficients of the matrices of GL(n,C) that

vanishes on the elements of the cyclic group 〈A〉. The expression Q(t) := P (exp(tB)) is

polynomial in t. Moreover it vanishes for t ∈ Z since P (Ak) = 0 for k ∈ Z. A complex

polynomial that vanishes on the integer numbers is necessarily 0. Thus P vanishes on

{exp(tB) : t ∈ C}. We deduce

〈A〉 ⊂ {exp(tB) : t ∈ C} ⊂ 〈A〉z

and then 〈A〉z = {exp(tB) : t ∈ C} since {exp(tB) : t ∈ C} is algebraic.

2.2 The closure of the group generated by a unipotent matrix

Let us generalize the previous example. Given a unipotent matrix A ∈ GL(n,C) we

consider the unique nilpotent matrix B such that A = exp(B).

VIII Escuela Doctoral Intercontinental de Matemáticas PUCP - UVA 191
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How to calculate B?

• We can write A in Jordan normal form and then to obtain B by using indeterminate

coefficients.

• Alternatively the formula log(1 + x) =
∑∞

j=1
(−1)j+1

j xj motivates us to define B =
∑∞

j=1
(−1)j+1

j (A− Id)j .

The sum defining B has only finitely many non-vanishing terms since A− Id is nilpotent.

The 1-dimensional complex vector space generated by B is the Lie algebra of the group

〈A〉z.

Definition 2.3. We denote logA = B. We say that logA is the infinitesimal generator

of A. We denote At = exp(tB) for t ∈ C.

The group {At : t ∈ C} is algebraic. The proof is similar as in the example since we

can write B in Jordan normal form. The same argument of the example shows that any

polynomial on the coefficients of GL(n,C) vanishing on 〈A〉 also vanishes on {At : t ∈ C}.
As a consequence we obtain

Proposition 2.4. Let A be a unipotent element of GL(n,C). Then 〈A〉z is equal to

{At : t ∈ C}

2.3 The closure of the group generated by a semisimple matrix

Let us consider a diagonal matrix A = diag(λ1, . . . , λn) ∈ GL(n,C). The algebraic closure
〈A〉z is contained in the algebraic group of diagonal matrices. Let us calculate 〈A〉z.

Definition 2.5. Given (k1, . . . , kn) ∈ Zn we associate the morphism of groups

χk1,...,kn : (C∗)n → C∗

(λ1, . . . , λn) �→ λk1
1 . . . λkn

n

.

We say that {χk1,...,kn : (k1, . . . , kn) ∈ Zn} is the group of characters of the complex torus

(C∗)n.

Remark 2.6. The group operation is the multiplication of characters. Indeed the map

(k1, . . . , kn) �→ χk1,...,kn is an isomorphism from Zn onto the group of characters.

Definition 2.7. Let λ = (λ1, . . . , λn) ∈ (C∗)n. We define

Jλ = {k ∈ Zn : χk(λ) = 1} and Gλ = {µ ∈ (C∗)n : χk(µ) = 1 for all k ∈ Jλ}.
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Let us calculate the Zariski-closure of the group generated by a diagonal matrix. The

arguments are presented in a series of exercises.

Exercise 2.1. Consider a subset J of Zn. Show that

{(λ1, . . . , λn) ∈ (C∗)n : χk1,...,kn(λ1, . . . , λn) = 1 for all (k1, . . . , kn) ∈ J}

is an algebraic group (we are identifying (C∗)n with the diagonal matrices). Deduce that

Gλ is an algebraic group containing λ.

Exercise 2.2. Let µ1, . . . µp pairwise different non-vanishing complex numbers. Suppose

that

c1µ
k
1 + . . .+ cpµ

k
p = 0

for all k ∈ Z. Show that c1 = . . . = cp = 0.

Exercise 2.3. Let P =
∑

i1,...,in
ai1...inx

i1
1 . . . xinn ∈ C[x1, . . . , xn] be a polynomial such

that P (λk
1, . . . , λ

k
n) = 0 for some (λ1, . . . , λn) ∈ (C∗)n and any k ∈ Z. We define

S = {λi1
1 . . . λin

n : ai1...in �= 0}.

We write P in the form
∑

µ∈S
∑

λ
i1
1 ...λin

n =µ
ai1...inx

i1
1 . . . xinn . Show

∑
λ
i1
1 ...λin

n =µ
ai1...in = 0

for any µ ∈ S.

Exercise 2.4. Let λ = (λ1, . . . , λn) ∈ (C∗)n. Consider

I(〈(λ1, . . . , λn)〉) = {P ∈ C[x1, . . . , xn] : P (λk
1, . . . , λ

k
n) = 0 for all k ∈ Z}

and

V (I(〈λ〉)) = {µ ∈ (C∗)n : P (µ) = 0 for all P ∈ I(〈λ〉)}.

Show Gλ = V (I(〈λ〉)).

Proposition 2.8. 〈λ〉z = Gλ.

Proposition 2.8 is a consequence of Exercise 2.4.

Corollary 2.9. Let λ = (λ1, . . . , λn) ∈ (C∗)n such that log λ1, . . . , log λn, 2πi are Q-

linearly independent (notice that the condition does not depend on the choice of log λj for

1 ≤ j ≤ n). Then 〈λ〉z = (C∗)n.
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2.4 The closure of a cyclic group

So far we calculated 〈A〉z for A ∈ GL(n,C) in two cases, namely if A is diagonalizable or

if A is unipotent. What happens in the general case? Let us see that it can be reduced to

the previous ones.

Let us introduce the so called Jordan multiplicative decomposition, it is a diagonalizable-

unipotent decomposition.

Proposition 2.10. Let A ∈ GL(n,C). There exist unique commuting matrices As, Au ∈
GL(n,C) such that As is diagonalizable, Au is unipotent and A = AsAu = AuAs.

The s in the subindex of As stands for semisimple. Indeed since As is diagonaliz-

able there exists a direct sum
⊕n

j=1 Vj where Vj is a vector subspace of dimension 1 of

eigenvectors of As. Each action (As)|Vj
: Vj → Vj is simple, meaning that it can not be

decomposed anymore or more rigorously that it is irreducible for any 1 ≤ j ≤ n. Since V is

decomposed into a sum of simple objects for the action of As we say that As is semisimple.

Anyway, we use diagonalizable and semisimple as synonyms.

The proof is an exercise in linear algebra (cf. [3, Corollary 1, p. 81]). The existence

of the decomposition is very easy to prove. Given any matrix the Jordan normal form

theorem implies that up to linear change of coordinates it can be decomposed in diagonal

blocks. For instance a 3× 3 block is of the form



λ 0 0

1 λ 0

0 1 λ


 =




λ 0 0

0 λ 0

0 0 λ







1 0 0

λ−1 1 0

0 λ−1 1


 .

The right hand side is the multiplicative Jordan decomposition of the block. Proceeding

analogously for each block we obtain the Jordan decomposition for the initial matrix.

This decomposition is also called Jordan-Chevalley decomposition. It is due to the

following result:

Theorem 2.11 (Chevalley, cf. [3, section I.4.4, p. 83]). Let G be a linear algebraic

subgroup of GL(n,C). Given any A ∈ G both the semisimple and the unipotent parts As

and Au of A also belong to G.

This result is extremely important and very useful to calculate invariance groups asso-

ciated to geometrical actions. Later on we will see some examples in the context of groups

of diffeomorphisms.

The Chevalley’s theorem implies that 〈A〉z contains As and Au and then the group

generated by 〈As〉
z
and 〈Au〉

z
. Are we missing some elements? The answer is no!
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Proposition 2.12. Let A ∈ GL(n,C). Then 〈A〉z is equal to the abelian group generated

by 〈As〉
z
and 〈Au〉

z
. In particular 〈A〉z is isomorphic to the direct product 〈As〉

z × 〈Au〉
z
.

How to prove Proposition 2.12? It is known that algebraic properties of groups do not

change when considering the algebraic closure, so since 〈A〉 is abelian the closure 〈A〉z is

also abelian. Anyway, let us prove such result in order to gain some familiarity with these

concepts.

Lemma 2.13. Let G be a commutative linear algebraic subgroup of GL(n,C). Then G
z

is commutative.

Proof. We define

Z(G) = {A ∈ GL(n,C) : AB −BA = 0 for all B ∈ G}.

Clearly Z(G) is a group (the so called centralizer of G) and it is algebraic since fixed

B ∈ G the equation AB − BA = 0 is linear in the coefficients of A. Since G is abelian,

Z(G) contains G. We obtain G
z ⊂ Z(G)

z
= Z(G). In particular G is contained in Z(G

z
)

and since the latter group is algebraic we deduce G
z ⊂ Z(G

z
). The latter property is

equivalent to G
z
being abelian.

Exercise 2.5. Lemma 2.13 and Chevalley’s theorem imply that the group generated by

〈As〉
z
and 〈Au〉

z
is abelian. Show this result without using Chevalley’s theorem.

How to find an algebraic group that contains 〈As〉
z ∪ 〈Au〉

z
? We can consider a mor-

phism

× : 〈As〉
z × 〈Au〉

z → GL(n,C)
(B,C) �→ BC

.

The group 〈As〉
z × 〈Au〉

z
can be interpreted as a linear matrix group, for instance as

a subgroup of GL(2n,C) making 〈As〉
z
(resp. 〈Au〉

z
) act on the first (resp. last) n

coordinates. We claim that it is a morphism of groups and an algebraic morphism, i.e. a

morphism of algebraic groups. It is clear that × is an algebraic morphism. Moreover ×
is a morphism of groups since the elements of 〈As〉

z
commute with the elements of 〈Au〉

z
.

Now we can use the following result:

Proposition 2.14 (cf. [3, Corollary 1.4, p. 47]). Let α : G → G′ be a morphism of matrix

algebraic groups. Then α(G) is an algebraic group.
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Algebraic properties of groups of complex analytic local diffeomorphisms

Proposition 2.12. Let A ∈ GL(n,C). Then 〈A〉z is equal to the abelian group generated

by 〈As〉
z
and 〈Au〉

z
. In particular 〈A〉z is isomorphic to the direct product 〈As〉

z × 〈Au〉
z
.

How to prove Proposition 2.12? It is known that algebraic properties of groups do not

change when considering the algebraic closure, so since 〈A〉 is abelian the closure 〈A〉z is

also abelian. Anyway, let us prove such result in order to gain some familiarity with these

concepts.

Lemma 2.13. Let G be a commutative linear algebraic subgroup of GL(n,C). Then G
z

is commutative.

Proof. We define

Z(G) = {A ∈ GL(n,C) : AB −BA = 0 for all B ∈ G}.

Clearly Z(G) is a group (the so called centralizer of G) and it is algebraic since fixed

B ∈ G the equation AB − BA = 0 is linear in the coefficients of A. Since G is abelian,

Z(G) contains G. We obtain G
z ⊂ Z(G)

z
= Z(G). In particular G is contained in Z(G

z
)

and since the latter group is algebraic we deduce G
z ⊂ Z(G

z
). The latter property is

equivalent to G
z
being abelian.

Exercise 2.5. Lemma 2.13 and Chevalley’s theorem imply that the group generated by

〈As〉
z
and 〈Au〉

z
is abelian. Show this result without using Chevalley’s theorem.

How to find an algebraic group that contains 〈As〉
z ∪ 〈Au〉

z
? We can consider a mor-

phism

× : 〈As〉
z × 〈Au〉

z → GL(n,C)
(B,C) �→ BC

.

The group 〈As〉
z × 〈Au〉

z
can be interpreted as a linear matrix group, for instance as

a subgroup of GL(2n,C) making 〈As〉
z
(resp. 〈Au〉

z
) act on the first (resp. last) n

coordinates. We claim that it is a morphism of groups and an algebraic morphism, i.e. a

morphism of algebraic groups. It is clear that × is an algebraic morphism. Moreover ×
is a morphism of groups since the elements of 〈As〉
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Remark 2.15. Given a subset M of GL(n,C) we denote by A(M) the intersection of the

algebraic groups containing M . Clearly A(M) is an algebraic group, the smallest one

containing M . Let α : G → G′ be a morphism of matrix algebraic groups and M ⊂ G. We

obtain α(A(M)) = A(α(M)). Indeed α(A(M)) is an algebraic group containing α(M) by

Proposition 2.14 and then A(α(M)) ⊂ α(A(M)). Moreover since α is continuous in the

Zariski topology we obtain that α−1(A(α(M))) is an algebraic group containing M and

then A(M). We deduce α(A(M)) ⊂ A(α(M)).

Proof of Proposition 2.12. This is just a recap of the discussion above. The semisimple

and unipotent parts As and Au of A belong to 〈A〉z by Chevalley’s theorem. Thus 〈As〉
z
,

〈Au〉
z
and then ×(〈As〉

z×〈Au〉
z
) are contained in 〈A〉z . Since ×(〈As〉

z×〈Au〉
z
) is algebraic

and contains the matrix A, we obtain

×(〈As〉
z × 〈Au〉

z
) = 〈A〉z.

The map × is injective. Indeed if ×(B,C) = BC = Id for some B ∈ 〈As〉
z
and C ∈ 〈Au〉

z

then BC is a Jordan-Chevalley decomposition of the identity map. Therefore we obtain

B = Id and C = Id. As a consequence 〈A〉z is isomorphic to 〈As〉
z × 〈Au〉

z
.

Exercise 2.6. Let G be an abelian subgroup of GL(n,C). Show

• The set of semisimple elements of G is a group.

• The set of unipotent elements of G is a group.

• Every semisimple element of G commutes with every unipotent element of G.

The group 〈A〉z satisfies the conditions of Exercise 2.6 by Proposition 2.12. The goal

of the exercise is extending this property to every abelian matrix group.

Remark 2.16. Is there any other distinguished class of groups that satisfies the properties

in Exercise 2.6? Nilpotent groups do (Suprunenko and Tyskevic, cf. [27, Theorem 7.11,

p. 97]).

2.5 Some elementary properties of linear algebraic groups

Let G be a linear algebraic matrix subgroup of GL(n,C). We introduce some properties

of algebraic matrix groups that generalize in the setting of local diffeomorphisms. By no

means the list is supposed to be exhaustive.
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Definition 2.17. We denote by G0 the connected component of the identity transforma-

tion Id.

Proposition 2.18 (cf. [3, Chapter I.1, p. 46]). Let G be a linear algebraic matrix subgroup

of GL(n,C). Then

• G is a smooth manifold.

• G0 is a closed finite index normal subgroup of G.

• Every algebraic subgroup of G of finite index contains G0.

In particular G0 is a linear algebraic group.

Remark 2.19. When we use topological terms as “closed” or “connected” in Proposition

2.18 we are referring to the Zariski topology. Anyway, an algebraic set is connected in the

Zariski topology if and only if it is connected in the usual topology. This can be deduced

from the connectedness in the usual topology of irreducible algebraic sets (cf. [25, Chapter

VII.2.2, Theorem 1]).

Definition 2.20. Let G be a linear algebraic group (or a Lie group). We define

L(G) = {A ∈ End(Cn) : exp(tA) ∈ G for all t ∈ C}.

Equivalently L(G) is the tangent space TIdG of G at Id. We say that L(G) is the Lie

algebra of the group G.

Exercise 2.7. Show the equivalence between the two definitions of L(G).

The definition is justified by the next result.

Proposition 2.21. L(G) is a complex Lie algebra where the Lie bracket [A,B] is defined

by AB −BA.

The definition implies that the set exp(L(G)) is contained in G0. Even if these sets

can be different we have

Proposition 2.22 (cf. [26, section 8.6, p. 177]). Let G be a linear algebraic group (or

more generally a Lie group). Then G0 = 〈exp(L(G))〉.

Exercise 2.8. Show that the Lie algebra of the algebraic group

SL(2,C) = {A ∈ GL(2,C) : detA = 1}

is equal to sl(2,C) = {A ∈ End(C2) : Tr(A) = 0}.
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of algebraic matrix groups that generalize in the setting of local diffeomorphisms. By no

means the list is supposed to be exhaustive.
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Definition 2.17. We denote by G0 the connected component of the identity transforma-

tion Id.

Proposition 2.18 (cf. [3, Chapter I.1, p. 46]). Let G be a linear algebraic matrix subgroup

of GL(n,C). Then

• G is a smooth manifold.

• G0 is a closed finite index normal subgroup of G.

• Every algebraic subgroup of G of finite index contains G0.

In particular G0 is a linear algebraic group.

Remark 2.19. When we use topological terms as “closed” or “connected” in Proposition

2.18 we are referring to the Zariski topology. Anyway, an algebraic set is connected in the

Zariski topology if and only if it is connected in the usual topology. This can be deduced

from the connectedness in the usual topology of irreducible algebraic sets (cf. [25, Chapter

VII.2.2, Theorem 1]).

Definition 2.20. Let G be a linear algebraic group (or a Lie group). We define

L(G) = {A ∈ End(Cn) : exp(tA) ∈ G for all t ∈ C}.

Equivalently L(G) is the tangent space TIdG of G at Id. We say that L(G) is the Lie

algebra of the group G.

Exercise 2.7. Show the equivalence between the two definitions of L(G).

The definition is justified by the next result.

Proposition 2.21. L(G) is a complex Lie algebra where the Lie bracket [A,B] is defined

by AB −BA.

The definition implies that the set exp(L(G)) is contained in G0. Even if these sets

can be different we have

Proposition 2.22 (cf. [26, section 8.6, p. 177]). Let G be a linear algebraic group (or

more generally a Lie group). Then G0 = 〈exp(L(G))〉.

Exercise 2.8. Show that the Lie algebra of the algebraic group

SL(2,C) = {A ∈ GL(2,C) : detA = 1}

is equal to sl(2,C) = {A ∈ End(C2) : Tr(A) = 0}.
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207

AlgebrAic properties of groups of complex AnAlytic locAl diffeomorphisms / JAvier ribón



J. Ribón

Exercise 2.9. Show that any matrix in exp(sl(2,C)) has Jordan normal form

(
λ 0

0 λ−1

)
or

(
1 0

1 1

)
.

Show that (
−1 0

1 −1

)

does not belong to exp(sl(2,C)) and that exp : sl(2,C) → SL(2,C) is not surjective.

Let us applicate the previous definitions to our test examples.

Remark 2.23. Let A ∈ GL(n,C) be unipotent. The Lie algebra of 〈A〉z is the 1-dimensional

complex vector space generated by the infinitesimal generator logA of A. The group 〈A〉z

is connected, indeed it is isomorphic to C.

Exercise 2.10. Let G be a linear algebraic group. Consider a unipotent element A of G.

Show that A belongs to G0.

Exercise 2.11. Consider the diagonal matrix A = diag(λ) where λ = (λ1, . . . , λn) ∈
(C∗)n. Let Jλ the subgroup of Zn of definition 2.7. We define J ′

λ as the intersection of the

Q-vector space generated by Jλ and Zn. Show that the group

{µ ∈ (C∗)n : χk1,...,kn(µ) = 1 for all (k1, . . . , kn) ∈ J ′
λ}

is equal to the connected component of the identity of 〈A〉z. Show

L(〈A〉z) = {diag(µ1, . . . , µn) : k1µ1 + . . .+ knµn = 0 for all (k1, . . . , kn) ∈ Jλ}.

Let us show a result that will be useful later on. We obtain the Zariski-closure of 〈A〉
as a Zariski-closure of groups generated by iterates of A.

Proposition 2.24. Let A ∈ GL(n,C). Consider k ∈ Z \ {0} such that Ak ∈ 〈A〉z0. Then

we obtain 〈Ak〉
z
= 〈A〉z0.

Proof. We denote H = 〈Ak〉
z
. Since A〈Ak〉A−1 = 〈Ak〉 we deduce AHA−1 = H. The

group H is a finite index subgroup of 〈H,A〉. Morever since H is algebraic, the group

〈H,A〉 is algebraic; indeed 〈H,A〉 is the algebraic closure of 〈A〉. The last item of

Proposition 2.18 implies 〈A〉z0 ⊂ H. Since H ⊂ 〈A〉z0 by the choice of k, we obtain

〈Ak〉
z
= 〈A〉z0.
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Let g be a Lie subalgebra of End(Cn). When is g algebraic? More precisely, when

is g the Lie algebra of an algebraic matrix group? There is a complete answer for this

question (cf. [3, Chapter II, section 7]). Let us focus though on a simpler problem in the

next exercise.

Exercise 2.12. Let µ = (µ1, . . . , µn) ∈ Cn. Suppose that µ1, . . . , µn are Q-linearly

independent. Show that the Lie algebra generated by diag(µ) is non-algebraic.

2.6 Classical results

Let us introduce well-known results by Lie and Kolchin about the structure of groups of

unipotent elements and solvable groups.

Theorem 2.25 (Kolchin, cf. [24, chapter V, p. 35]). Let V be a finite dimensional vector

space over a field K. Let G be a subgroup of GL(V ) such that each element g ∈ G is

unipotent. Then up to a change of base G is a group of upper triangular matrices.

Theorem 2.26 (Lie-Kolchin, cf. [8, section 17.6, p. 113]). Let G be a solvable connected

subgroup of GL(n, F ) where F is an algebraically closed field. Then up to a change of base

G is a group of upper triangular matrices.

2.7 More properties of algebraic groups

We continue describing the properties of the algebraic closure of a subgroup of GL(n,C).

Definition 2.27. Let G be a subgroup of GL(n,C). We denote by Gu the subset of G of

unipotent transformations. We say that the group G is unipotent if G = Gu.

Definition 2.28. Let G be a group. We define the derived group G(1) (or [G,G]) of G as

G(1) = 〈fgf−1g−1 : f, g ∈ G〉,

i.e. G(1) is the subgroup generated by the commutators of elements of G. We define

G(2) = [G(1), G(1)], G(3) = [G(2), G(2)], . . . recursively. We denote G(0) = G.

Definition 2.29. We say that G is solvable if there exists p ∈ N∪{0} such that G(p) = {1}.
Moreover the minimum such p is called the derived length �(G) of G. We define �(G) = ∞
if G is non-solvable.

Lemma 2.30. Let G be a subgroup of GL(n,C). Then
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• �(G
z
) = �(G).

• (G
z
)u ⊂ (G

z
)0.

• G
z
= (G

z
)u if G is unipotent.

• (G
z
)u is a closed normal connected subgroup of the group G

z
if G is solvable.

Proof. Since �(G) ≤ �(G
z
) it suffices to prove that G(p) = {Id} implies (G

z
)(p) = {Id}.

The property G(p) = {Id} is equivalent to a system of algebraic equations. The system is

also satisfied for G
z
by definition of the Zariski-closure. Hence we obtain (G

z
)(p) = {Id}.

The second item is a consequence of Exercise 2.10.

We claim that (G
z
)u is an algebraic subset of G

z
. Indeed it is the subset of G

z
defined

by the equation (A − Id)n = 0 that is algebraic in the coefficients of A. Let G be a

unipotent group. We have G ⊂ (G
z
)u ⊂ G

z
. Since G

z
is the minimal algebraic set

containing G, we deduce (G
z
)u = G

z
.

Let us show the last item. We already proved that (G
z
)u is closed (or equivalently

algebraic). Given A ∈ (G
z
)u we have

{At : t ∈ C} = 〈A〉z ⊂ (G
z
)u

z
= (G

z
)u

and {At : t ∈ C} is a connected set containing Id and A. Therefore (G
z
)u coincides with

its connected component of Id and it is connected. It is clear that (G
z
)u is normal as a set,

meaning A(G
z
)uA

−1 = (G
z
)u since a conjugate of a unipotent matrix is also unipotent.

Notice that we did not use so far that G is solvable, we will use it now to show that (G
z
)u

is a subgroup.

The group G
z
is solvable by the first item and (G

z
)0 is solvable too since it is a subgroup

of G
z
. The group (G

z
)0 is connected by definition, hence we apply Lie-Kolchin’s theorem;

we can suppose that it is a group of upper triangular matrices up to linear conjugacy.

The eigenvalues of an upper triangular matrix are exactly the coefficients in the principal

diagonal of the matrix. Thus the elements of (G
z
)u are the elements of (G

z
)0 that have all

the elements of the diagonal principal equal to 1. The product of two elements of (G
z
)u

is still an upper triangular matrix whose principal diagonal coefficients are all equal to 1

and in particular belongs to (G
z
)u. Analogously the inverse of an element of (G

z
)u also

belongs to (G
z
)u. We deduce that (G

z
)u is a group.

Exercise 2.13. Show that the subset of unipotent elements of the algebraic group GL(n,C)
is not a group.
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3 Pro-algebraic groups

Inspired by matrix groups we want to define the algebraic closure of a group of local

diffeomorphisms. The main problem is that groups of diffeomorphisms can be infinite

dimensional. Indeed an element φ of Diff (Cn, 0) is of the form

φ(x1, . . . , xn) = (
∑

i1+...+in≥1

a1i1...inx
i1
1 . . . xinn , . . . ,

∑
i1+...+in≥1

ani1...inx
i1
1 . . . xinn )

where the linear part D0φ at 0 is an invertible matrix and there are infinitely many

coefficients in the power series defining φ. Anyway given any degree there are finitely

many coefficients up to that degree. This suggests that it could be interesting to truncate

a group of diffeomorphisms up to any degree, considering the algebraic closure in each

of them and then pasting the information obtained. Let us explain how to execute this

strategy in this section.

The first idea is forgetting for a minute that a diffeomorphism is a dynamical object.

Let us interpret a diffeomorphism as an operator in a space of functions.

Definition 3.1. We denote by Ôn be the local ring C[[x1, . . . , xn]] of complex formal

power series in n variables. We denote by m the maximal ideal of Ôn.

Every local diffeomorphism φ ∈ Diff (Cn, 0) induces two morphisms of C-algebras by

composition in Ôn and m respectively:

Ôn → Ôn

f �→ f ◦ φ
and

m → m

f �→ f ◦ φ.
(1)

The map that associates to any φ ∈ Diff (Cn, 0) the operator induced by φ in m or Ôn is

injective since φ is determined by the compositions x1 ◦ φ, . . . , xn ◦ φ.
Instead of considering the action of φ ∈ Diff (Cn, 0) on m let us consider the action

induced on the finite dimensional vector complex space m/mk+1, i.e. on the space of k-jets.

We remind the reader that mk+1 is the (k + 1)th-power of the ideal m. Intuitively we are

considering the power series expansion of φ up to order k. More precisely we consider the

element φk ∈ GL(m/mk+1) defined by

m/mk+1 φk→ m/mk+1

g +mk+1 �→ g ◦ φ+mk+1.
(2)

Definition 3.2. We define Dk = {ϕk : ϕ ∈ Diff(Cn, 0)}.
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Remark 3.3. Dk is a subgroup of the linear group GL(m/mk+1).

Exercise 3.1. Show that Dk is the group of isomorphisms of the C-algebra m/mk+1.

The group Dk can be understood as an algebraic group of matrices by noticing that

we have

Dk = {α ∈ GL(m/mk+1) : α(gh) = α(g)α(h) for all g, h ∈ m/mk+1}

and that fixed g, h ∈ m/mk+1 the equation α(gh) = α(g)α(h) is algebraic on the coefficients

of α.

3.1 Example

Let us illustrate the algebraic nature of D2 for n = 2. We denote x = x1 and y = x2. A

base of m/m3 is given by the classes of the monomials of degree 1 and 2, namely x, y, x2,

xy and y2. Any element A of GL(m/m3) is represented by a 5× 5 invertible matrix




a11 a12 a13 a14 a15

a21 a22 a23 a24 a25

a31 a32 a33 a34 a35

a41 a42 a43 a44 a45

a51 a52 a53 a54 a55




in such a basis. Notice that

A(x+m3) = a11x+ a21y + a31x
2 + a41xy + a51y

2 +m3

and

A(y +m3) = a12x+ a22y + a32x
2 + a42xy + a52y

2 +m3

determine an element A of D2 since x2, xy and y2 are products of x and y. The equation

A(x2 +m3) = A(x+m3)A(x+m3) implies

a13x+ a23y + a33x
2 + a43xy + a53y

2 = (a11x+ a21y + a31x
2 + a41xy + a51y

2)2

modulo m3, i.e. modulo discarding the terms of degree greater or equal than 3. In

particular we obtain

a13 = 0, a23 = 0, a33 = a211, a43 = 2a11a21, a53 = a221. (3)
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By analyzing A(xy +m3) = A(x+m3)A(y +m3) and A(y2 +m3) = A(y +m3)A(y +m3)

we obtain

a14 = 0, a24 = 0, a34 = a11a12, a44 = a11a22 + a21a12, a54 = a21a22 (4)

and

a15 = 0, a25 = 0, a35 = a212, a45 = 2a12a22, a55 = a222 (5)

respectively. Equations (3), (4) and (5) determine the algebraic group D2.

3.2 The group of formal diffeomorphisms

We can think of Dk as the truncation of the group Diff (Cn, 0) up to the order k. Let us

study the relations between the groups Dk for k ∈ N.
Consider l ≥ k ≥ 1. We want to define a natural map πl,k : Dl → Dk for l ≥ k ≥ 1.

The idea is that the truncation of a diffeomorphism up to order l provides all truncations

of orders less than l. The map πl,k strips the elements of Dl of the information associated

to the levels higher than k.

Definition 3.4. Given l ≥ k ≥ 1 and A ∈ Dl we define πl,k(A) as the unique element of

Dk such that

m/ml+1 A−→ m/ml+1

↓ ↓

m/mk+1 πl,k(A)
−→ m/mk+1

is commutative where the vertical arrows are the natural projections.

The map πl,k : Dl → Dk is well-defined since every element of Dl leaves invariant every

subspace of the form mp/ml+1 for 1 ≤ p ≤ l + 1 and in particular mk+1/ml+1.

Exercise 3.2. Let φ ∈ Diff (Cn, 0). Show πl,k(φl) = φk for l ≥ k ≥ 1.

Lemma 3.5. The pair ((Dk)k∈N, (πl,k)l≥k≥1) is an inverse system of algebraic groups and

morphisms of algebraic groups. Moreover πl,k is surjective for any l ≥ k ≥ 1.

sketch of proof. It is a simple exercise to check out that πl,k is a morphism of algebraic

groups. We are just forgetting the action of an element of Dl on mk+1/ml+1.

We have πp,p = Id|Dp
and πj,l ◦πl,k = πj,k for all p ∈ N and j ≥ l ≥ k ≥ 1 by Definition

3.4.

Fix l ≥ k ≥ 1. The map πl,k is surjective, in fact given A ∈ Dk there exists by

definition φ ∈ Diff (Cn, 0) such that φk = A and we have πl,k(φl) = φk = A.
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Remark 3.3. Dk is a subgroup of the linear group GL(m/mk+1).

Exercise 3.1. Show that Dk is the group of isomorphisms of the C-algebra m/mk+1.

The group Dk can be understood as an algebraic group of matrices by noticing that

we have

Dk = {α ∈ GL(m/mk+1) : α(gh) = α(g)α(h) for all g, h ∈ m/mk+1}

and that fixed g, h ∈ m/mk+1 the equation α(gh) = α(g)α(h) is algebraic on the coefficients

of α.

3.1 Example

Let us illustrate the algebraic nature of D2 for n = 2. We denote x = x1 and y = x2. A

base of m/m3 is given by the classes of the monomials of degree 1 and 2, namely x, y, x2,

xy and y2. Any element A of GL(m/m3) is represented by a 5× 5 invertible matrix




a11 a12 a13 a14 a15

a21 a22 a23 a24 a25

a31 a32 a33 a34 a35

a41 a42 a43 a44 a45

a51 a52 a53 a54 a55




in such a basis. Notice that

A(x+m3) = a11x+ a21y + a31x
2 + a41xy + a51y

2 +m3

and

A(y +m3) = a12x+ a22y + a32x
2 + a42xy + a52y

2 +m3

determine an element A of D2 since x2, xy and y2 are products of x and y. The equation

A(x2 +m3) = A(x+m3)A(x+m3) implies

a13x+ a23y + a33x
2 + a43xy + a53y

2 = (a11x+ a21y + a31x
2 + a41xy + a51y

2)2

modulo m3, i.e. modulo discarding the terms of degree greater or equal than 3. In

particular we obtain

a13 = 0, a23 = 0, a33 = a211, a43 = 2a11a21, a53 = a221. (3)
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By analyzing A(xy +m3) = A(x+m3)A(y +m3) and A(y2 +m3) = A(y +m3)A(y +m3)

we obtain

a14 = 0, a24 = 0, a34 = a11a12, a44 = a11a22 + a21a12, a54 = a21a22 (4)

and

a15 = 0, a25 = 0, a35 = a212, a45 = 2a12a22, a55 = a222 (5)

respectively. Equations (3), (4) and (5) determine the algebraic group D2.

3.2 The group of formal diffeomorphisms

We can think of Dk as the truncation of the group Diff (Cn, 0) up to the order k. Let us

study the relations between the groups Dk for k ∈ N.
Consider l ≥ k ≥ 1. We want to define a natural map πl,k : Dl → Dk for l ≥ k ≥ 1.

The idea is that the truncation of a diffeomorphism up to order l provides all truncations

of orders less than l. The map πl,k strips the elements of Dl of the information associated

to the levels higher than k.

Definition 3.4. Given l ≥ k ≥ 1 and A ∈ Dl we define πl,k(A) as the unique element of

Dk such that

m/ml+1 A−→ m/ml+1

↓ ↓

m/mk+1 πl,k(A)
−→ m/mk+1

is commutative where the vertical arrows are the natural projections.

The map πl,k : Dl → Dk is well-defined since every element of Dl leaves invariant every

subspace of the form mp/ml+1 for 1 ≤ p ≤ l + 1 and in particular mk+1/ml+1.

Exercise 3.2. Let φ ∈ Diff (Cn, 0). Show πl,k(φl) = φk for l ≥ k ≥ 1.

Lemma 3.5. The pair ((Dk)k∈N, (πl,k)l≥k≥1) is an inverse system of algebraic groups and

morphisms of algebraic groups. Moreover πl,k is surjective for any l ≥ k ≥ 1.

sketch of proof. It is a simple exercise to check out that πl,k is a morphism of algebraic

groups. We are just forgetting the action of an element of Dl on mk+1/ml+1.

We have πp,p = Id|Dp
and πj,l ◦πl,k = πj,k for all p ∈ N and j ≥ l ≥ k ≥ 1 by Definition

3.4.

Fix l ≥ k ≥ 1. The map πl,k is surjective, in fact given A ∈ Dk there exists by

definition φ ∈ Diff (Cn, 0) such that φk = A and we have πl,k(φl) = φk = A.
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Definition 3.6. We define the group D̂iff (Cn, 0) of formal diffeomorphisms as the pro-

jective limit lim←−k∈NDk.

Remark 3.7. Let us remind that the elements of lim←−k∈NDk are of the form (Ak)k≥1 where

Ak ∈ Dk and πl,k(Al) = Ak for all l ≥ k ≥ 1. In particular the map

Diff (Cn, 0) → D̂iff (Cn, 0)

φ �→ (φk)k≥1

is an injective morphism of groups. In this way we see Diff (Cn, 0) as a subgroup of

D̂iff (Cn, 0).

Let us give a (maybe) more pleasant presentation of the group of formal diffeomorphism

in which it is clear that D̂iff (Cn, 0) is the formal completion of Diff (Cn, 0).

We consider the notation
∑

aix
i for formal power series where i = (i1, . . . , in) is a

multi-index of degree |i| = i1 + . . .+ in and xi = xi11 . . . xinn . Given a power series
∑

aix
i

we define jk(
∑

aix
i) =

∑
|i|≤k aix

i. We define jk(f1, . . . , fn) = (jkf1, . . . , j
kfn) for a

n-uple of power series.

Consider the set Diff(Cn, 0) of elements (φ1, . . . , φn) of m
n such that (j1φ1, . . . , j

1φn)

is an invertible linar map. The set of elements of Diff(Cn, 0) such that all their coordinates

are convergent power series coincides with the group Diff (Cn, 0) by the inverse function

theorem. It would be natural to define Diff(Cn, 0) as the group of formal diffeomorphisms

too. This is not an issue in our approach since lim←−k∈NDk and Diff(Cn, 0) can be identified.

Exercise 3.3. Define a group operation in Diff(Cn, 0) such that Diff (Cn, 0) is a subgroup

of Diff(Cn, 0).

Given

η =


∑

|i|≥1

a1ix
i, . . . ,

∑
|i|≥1

ani x
i


 ∈ Diff(Cn, 0)

let us construct an element of lim←−Dk. The diffeomorphisms jlη, jkη ∈ Diff (Cn, 0) satisfy

(jlη)k = (jkη)k for any l ≥ k ≥ 1 (the action on m/mk+1 depends on the power expansion

of the diffeomorphism up to order k). We define ηk = (jkη)k for k ∈ N and η = (ηk)k≥1.

Then η belongs to lim←−Dk since

πl,k(ηl) = πl,k((j
lη)l) = (jlη)k = (jkη)k = ηk

for all l ≥ k ≥ 1. The second equality is a consequence of jlη ∈ Diff (Cn, 0) and Remark

3.7. Resuming we associate η ∈ D̂iff (Cn, 0) to η ∈ Diff(Cn, 0).
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Let us describe the inverse process. Given η ∈ lim←−k∈NDk we want to interpret it in

some way closer to our intuition of what a diffeomorphism is. Indeed if η ∈ Diff (Cn, 0)

then the image of xj by the operator defined by η (cf. Equation (1)) is the jth coordinate

xj ◦ η of η. How to obtain the jth coordinate of an element (Ak)k≥1 of lim←−k∈NDk? We

consider the sequence (Ak(xj + mk+1))k≥1. Since it belongs to m = lim←−m/mk+1, we can

interpret (Ak(xj +mk+1))k≥1 as an element ηj of m. Moreover j1η1 +m2, . . . , j1ηn +m2 is

the image by A1 of the basis x1 +m2, . . . , xn +m2. Since A1 is invertible, (j1η1, . . . , j
1ηn)

is also an invertible linear map. We deduce that

η(x1, . . . , xn) := (η1(x1, . . . , xn), . . . , ηn(x1, . . . , xn))

belongs to Diff(Cn, 0).

Exercise 3.4. Show that the correspondences η → η and η → η described above are

inverses of each other. Deduce that D̂iff (Cn, 0) and Diff(Cn, 0) are isomorphic groups.

3.3 The Jordan-Chevalley decomposition

Let us see that the Jordan-Chevalley decomposition is compatible with the inverse system

((Dk)k∈N, (πl,k)l≥k≥1) and as a consequence formal diffeomorphisms possess a multiplica-

tive Jordan decomposition.

Let φ ∈ Diff (Cn, 0) (or D̂iff (Cn, 0)). We already know that φ defines an element

(φk)k≥1 of lim←−Dk. (cf. Equation (2)). Since φk ∈ GL(m/mk+1) we can consider its

semisimple-unipotent decomposition φk = φk,sφk,u = φk,uφk,s. The elements of the de-

composition belong to Dk by Chevalley’s theorem.

Exercise 3.5. Let l ≥ k ≥ 1 and A ∈ Dl. Show that πl,k(As) is semisimple and πl,k(Au)

is unipotent.

Exercise 3.6. Let φ ∈ D̂iff (Cn, 0). Show πl,k(φl,s) = φk,s and πl,k(φl,u) = φk,u for

l ≥ k ≥ 1. Deduce that (φk,s)k≥1 and (φk,u)k≥1 define elements of D̂iff (Cn, 0).

Definition 3.8. Let φ ∈ D̂iff (Cn, 0). We say that φ is semisimple if φk is semisimple (cf.

Equation (2)) for any k ∈ N.

Definition 3.9. Let φ ∈ D̂iff (Cn, 0). We say that φ is unipotent if φk is unipotent (cf.

Equation (2)) for any k ∈ N. Given a subgroup G of D̂iff (Cn, 0) we define Gu as its subset

of unipotent elements. We say that G is unipotent if G = Gu. We denote by D̂iff u(Cn, 0)

the subset of D̂iff (Cn, 0) consisting of unipotent formal diffeomorphisms.
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Definition 3.6. We define the group D̂iff (Cn, 0) of formal diffeomorphisms as the pro-

jective limit lim←−k∈NDk.

Remark 3.7. Let us remind that the elements of lim←−k∈NDk are of the form (Ak)k≥1 where

Ak ∈ Dk and πl,k(Al) = Ak for all l ≥ k ≥ 1. In particular the map

Diff (Cn, 0) → D̂iff (Cn, 0)

φ �→ (φk)k≥1

is an injective morphism of groups. In this way we see Diff (Cn, 0) as a subgroup of

D̂iff (Cn, 0).

Let us give a (maybe) more pleasant presentation of the group of formal diffeomorphism

in which it is clear that D̂iff (Cn, 0) is the formal completion of Diff (Cn, 0).

We consider the notation
∑

aix
i for formal power series where i = (i1, . . . , in) is a

multi-index of degree |i| = i1 + . . .+ in and xi = xi11 . . . xinn . Given a power series
∑

aix
i

we define jk(
∑

aix
i) =

∑
|i|≤k aix

i. We define jk(f1, . . . , fn) = (jkf1, . . . , j
kfn) for a

n-uple of power series.

Consider the set Diff(Cn, 0) of elements (φ1, . . . , φn) of m
n such that (j1φ1, . . . , j

1φn)

is an invertible linar map. The set of elements of Diff(Cn, 0) such that all their coordinates

are convergent power series coincides with the group Diff (Cn, 0) by the inverse function

theorem. It would be natural to define Diff(Cn, 0) as the group of formal diffeomorphisms

too. This is not an issue in our approach since lim←−k∈NDk and Diff(Cn, 0) can be identified.

Exercise 3.3. Define a group operation in Diff(Cn, 0) such that Diff (Cn, 0) is a subgroup

of Diff(Cn, 0).

Given

η =


∑

|i|≥1

a1ix
i, . . . ,

∑
|i|≥1

ani x
i


 ∈ Diff(Cn, 0)

let us construct an element of lim←−Dk. The diffeomorphisms jlη, jkη ∈ Diff (Cn, 0) satisfy

(jlη)k = (jkη)k for any l ≥ k ≥ 1 (the action on m/mk+1 depends on the power expansion

of the diffeomorphism up to order k). We define ηk = (jkη)k for k ∈ N and η = (ηk)k≥1.

Then η belongs to lim←−Dk since

πl,k(ηl) = πl,k((j
lη)l) = (jlη)k = (jkη)k = ηk

for all l ≥ k ≥ 1. The second equality is a consequence of jlη ∈ Diff (Cn, 0) and Remark

3.7. Resuming we associate η ∈ D̂iff (Cn, 0) to η ∈ Diff(Cn, 0).
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Let us describe the inverse process. Given η ∈ lim←−k∈NDk we want to interpret it in

some way closer to our intuition of what a diffeomorphism is. Indeed if η ∈ Diff (Cn, 0)

then the image of xj by the operator defined by η (cf. Equation (1)) is the jth coordinate

xj ◦ η of η. How to obtain the jth coordinate of an element (Ak)k≥1 of lim←−k∈NDk? We

consider the sequence (Ak(xj + mk+1))k≥1. Since it belongs to m = lim←−m/mk+1, we can

interpret (Ak(xj +mk+1))k≥1 as an element ηj of m. Moreover j1η1 +m2, . . . , j1ηn +m2 is

the image by A1 of the basis x1 +m2, . . . , xn +m2. Since A1 is invertible, (j1η1, . . . , j
1ηn)

is also an invertible linear map. We deduce that

η(x1, . . . , xn) := (η1(x1, . . . , xn), . . . , ηn(x1, . . . , xn))

belongs to Diff(Cn, 0).

Exercise 3.4. Show that the correspondences η → η and η → η described above are

inverses of each other. Deduce that D̂iff (Cn, 0) and Diff(Cn, 0) are isomorphic groups.

3.3 The Jordan-Chevalley decomposition

Let us see that the Jordan-Chevalley decomposition is compatible with the inverse system

((Dk)k∈N, (πl,k)l≥k≥1) and as a consequence formal diffeomorphisms possess a multiplica-

tive Jordan decomposition.

Let φ ∈ Diff (Cn, 0) (or D̂iff (Cn, 0)). We already know that φ defines an element

(φk)k≥1 of lim←−Dk. (cf. Equation (2)). Since φk ∈ GL(m/mk+1) we can consider its

semisimple-unipotent decomposition φk = φk,sφk,u = φk,uφk,s. The elements of the de-

composition belong to Dk by Chevalley’s theorem.

Exercise 3.5. Let l ≥ k ≥ 1 and A ∈ Dl. Show that πl,k(As) is semisimple and πl,k(Au)

is unipotent.

Exercise 3.6. Let φ ∈ D̂iff (Cn, 0). Show πl,k(φl,s) = φk,s and πl,k(φl,u) = φk,u for

l ≥ k ≥ 1. Deduce that (φk,s)k≥1 and (φk,u)k≥1 define elements of D̂iff (Cn, 0).

Definition 3.8. Let φ ∈ D̂iff (Cn, 0). We say that φ is semisimple if φk is semisimple (cf.

Equation (2)) for any k ∈ N.

Definition 3.9. Let φ ∈ D̂iff (Cn, 0). We say that φ is unipotent if φk is unipotent (cf.

Equation (2)) for any k ∈ N. Given a subgroup G of D̂iff (Cn, 0) we define Gu as its subset

of unipotent elements. We say that G is unipotent if G = Gu. We denote by D̂iff u(Cn, 0)

the subset of D̂iff (Cn, 0) consisting of unipotent formal diffeomorphisms.

VIII Escuela Doctoral Intercontinental de Matemáticas PUCP - UVA 205
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Definition 3.10. We denote by φs (resp. φu) the element (φk,s)k≥1 (resp. (φk,u)k≥1) of

D̂iff (Cn, 0).

We can summarize the previous discussion in the following result:

Proposition 3.11. Let φ ∈ D̂iff (Cn, 0). There exist unique elements φs, φu of D̂iff (Cn, 0)

such that φ = φs ◦ φu = φu ◦ φs, φs is semisimple and φu is unipotent.

We generalized the multiplicative Jordan decomposition for diffeomorphisms. Anyway,

it is difficult to check out whether a diffeomorphism is semisimple or unipotent by applying

the definition since it depends on their actions on all the jet spaces. Let us characterize

the decomposition in simpler terms.

Proposition 3.12. Let φ ∈ D̂iff (Cn, 0). Then φ is unipotent if and only if j1φ is unipo-

tent.

Proof. The matrix of j1φ is the transposed of the matrix of φ1. Thus φ1 is unipotent if

and only if j1φ is unipotent.

We have to show that φk is unipotent for any k ∈ N if and only if φ1 is unipotent.

Let us prove the non-trivial implication. Consider the operator ∆ : m → m defined by

∆(f) = f ◦ φ − f . The unipotence of φk is equivalent to the existence of some l = l(k)

such that ∆l(m) ⊂ mk+1. Hence it suffices to show that given k ∈ N there exists jk ∈ N
such that ∆jk(mk) ⊂ mk+1. The existence of j1 is a consequence of the unipotence of φ1.

We have

∆(fg) = (fg) ◦ φ− fg = (f ◦ φ− f)(g ◦ φ− g) + (f ◦ φ− f)g + f(g ◦ φ− g)

and then ∆(fg) = ∆(f)∆(g) + ∆(f)g + f∆(g). Given j ≥ 1 we obtain

∆j(fg) =
∑

j≤m+l, 0≤m≤j, 0≤l≤j

cjml∆
m(f)∆l(g) (6)

where cjml is a positive integer number independent of f and g for j ≤ m+ l, 0 ≤ m ≤ j

and 0 ≤ l ≤ j.

Suppose ∆jk(mk) ⊂ mk+1 for some k ∈ N. We define jk+1 = jk + j1. Let f ∈ mk

and g ∈ m. Consider a non-vanishing coefficient cjk+1ml in Equation (6). Then we have

either m ≥ jk or l ≥ j1. In the former case the term cjk+1ml∆
m(f)∆l(g) belongs to

mk+2 = mk+1m whereas it belongs to mk+2 = mkm2 in the latter case. Anyway ∆jk+1(fg)

belongs to mk+2. Since any element of mk+1 is of the form f1g1 + . . . + faga where

f1, . . . , fa ∈ mk and g1, . . . , ga ∈ m, we deduce ∆jk+1(mk+1) ⊂ mk+2.
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Algebraic properties of groups of complex analytic local diffeomorphisms

Next we see that a diffeomorphism is semisimple if and only if it is diagonalizable.

Proposition 3.13. Let φ ∈ D̂iff (Cn, 0). Then φ is semisimple if and only if there exists

ψ ∈ D̂iff (Cn, 0) such that ψ ◦ φ ◦ ψ−1 = (λ1x1, . . . , λnxn) for some (λ1, . . . , λn) ∈ (C∗)n.

Proof. Let us prove the necessary condition. The formula η(x1, . . . , xn) = (λ1x1, . . . , λnxn)

defines an element η of Diff (Cn, 0). We claim that the transformation ηk is semisimple

for any k ∈ N. Indeed xi11 . . . xinn +mk+1 is an eigenvector of ηk of eigenvalue λi1
1 . . . λin

n for

1 ≤ i1 + . . . + in ≤ k. Since the classes of the monomials define a basis of m/mk+1, we

deduce that there exists a basis of eigenvectors for ηk. Since φk is conjugated to ηk by a

linear map, φk is semisimple for any k ∈ N.
Let us show the sufficient condition. Since φ1 is semisimple there exists a linear map

ψ1 such that ψ1 ◦ j1φ ◦ ψ−1
1 = (λ1x1, . . . , λnxn) for some (λ1, . . . , λn) ∈ (C∗)n. We denote

η(x1, . . . , xn) = (λ1x1, . . . , λnxn). Let us see that if there exists ψk ∈ Diff (Cn, 0) such that

ψk ◦φ ◦ψ−1
k is equal to η modulo mk+1 (or in other words (ψk ◦φ ◦ψ−1

k )k = ηk) then there

exists ψk+1 ∈ Diff (Cn, 0) such that ψk+1 ◦ φ ◦ ψ−1
k+1 is equal to η modulo mk+2. Moreover

we can choose ψk+1 such that it is equal to ψk modulo mk+1. This result implies that

(ψk)k≥1 defines an element of D̂iff (Cn, 0) such that ψ ◦ φ ◦ ψ−1 = η.

We replace φ with ψk ◦ φ ◦ ψ−1
k without lack of generality. We say that (i1 . . . in; l) is

resonant and we denote (i1 . . . in; l) ∈ R if λl = λi1
1 . . . λin

n . We define

S =


λ1x1 +

∑
|i|=k+1, (i;1)�∈R

a1ix
i, . . . , λnxn +

∑
|i|=k+1, (i;n)�∈R

ani x
i




and

U =


x1 +

∑
|i|=k+1, (i;1)∈R

λ−1
1 a1ix

i, . . . , xn +
∑

|i|=k+1, (i;n)∈R

λ−1
n ani x

i


 .

We have jk+1φ = jk+1(S ◦ U) = jk+1(U ◦ S). It is clear that Uk+1 is unipotent by

Proposition 3.12. Suppose that we prove the existence of αk+1 ∈ Diff (Cn, 0) that is equal

to Id modulo mk+1 and such that αk+1 ◦ S ◦α−1
k+1 coincides with η modulo mk+2. Then it

is clear that Sk+1 is semisimple by the necessary condition and Sk+1Uk+1 is the Jordan-

Chevalley decomposition of φk+1. Since φk+1 is semisimple by hypothesis, we obtain

Uk+1 ≡ Id and then U ≡ Id. In particular αk+1 ◦ φ ◦α−1
k+1 coincides with η modulo mk+2.

Let us diagonalize S modulo mk+2. We define

αk+1 =


x1 +

∑
|i|=k+1, (i;1)�∈R

a1i

λ1 − λi
xi, . . . , xn +

∑
|i|=k+1, (i;n)�∈R

ani

λn − λi
xi


 .

VIII Escuela Doctoral Intercontinental de Matemáticas PUCP - UVA 207
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Definition 3.10. We denote by φs (resp. φu) the element (φk,s)k≥1 (resp. (φk,u)k≥1) of

D̂iff (Cn, 0).

We can summarize the previous discussion in the following result:

Proposition 3.11. Let φ ∈ D̂iff (Cn, 0). There exist unique elements φs, φu of D̂iff (Cn, 0)

such that φ = φs ◦ φu = φu ◦ φs, φs is semisimple and φu is unipotent.

We generalized the multiplicative Jordan decomposition for diffeomorphisms. Anyway,

it is difficult to check out whether a diffeomorphism is semisimple or unipotent by applying

the definition since it depends on their actions on all the jet spaces. Let us characterize

the decomposition in simpler terms.

Proposition 3.12. Let φ ∈ D̂iff (Cn, 0). Then φ is unipotent if and only if j1φ is unipo-

tent.

Proof. The matrix of j1φ is the transposed of the matrix of φ1. Thus φ1 is unipotent if

and only if j1φ is unipotent.

We have to show that φk is unipotent for any k ∈ N if and only if φ1 is unipotent.

Let us prove the non-trivial implication. Consider the operator ∆ : m → m defined by

∆(f) = f ◦ φ − f . The unipotence of φk is equivalent to the existence of some l = l(k)

such that ∆l(m) ⊂ mk+1. Hence it suffices to show that given k ∈ N there exists jk ∈ N
such that ∆jk(mk) ⊂ mk+1. The existence of j1 is a consequence of the unipotence of φ1.

We have

∆(fg) = (fg) ◦ φ− fg = (f ◦ φ− f)(g ◦ φ− g) + (f ◦ φ− f)g + f(g ◦ φ− g)

and then ∆(fg) = ∆(f)∆(g) + ∆(f)g + f∆(g). Given j ≥ 1 we obtain

∆j(fg) =
∑

j≤m+l, 0≤m≤j, 0≤l≤j

cjml∆
m(f)∆l(g) (6)

where cjml is a positive integer number independent of f and g for j ≤ m+ l, 0 ≤ m ≤ j

and 0 ≤ l ≤ j.

Suppose ∆jk(mk) ⊂ mk+1 for some k ∈ N. We define jk+1 = jk + j1. Let f ∈ mk

and g ∈ m. Consider a non-vanishing coefficient cjk+1ml in Equation (6). Then we have

either m ≥ jk or l ≥ j1. In the former case the term cjk+1ml∆
m(f)∆l(g) belongs to

mk+2 = mk+1m whereas it belongs to mk+2 = mkm2 in the latter case. Anyway ∆jk+1(fg)

belongs to mk+2. Since any element of mk+1 is of the form f1g1 + . . . + faga where

f1, . . . , fa ∈ mk and g1, . . . , ga ∈ m, we deduce ∆jk+1(mk+1) ⊂ mk+2.
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Next we see that a diffeomorphism is semisimple if and only if it is diagonalizable.

Proposition 3.13. Let φ ∈ D̂iff (Cn, 0). Then φ is semisimple if and only if there exists

ψ ∈ D̂iff (Cn, 0) such that ψ ◦ φ ◦ ψ−1 = (λ1x1, . . . , λnxn) for some (λ1, . . . , λn) ∈ (C∗)n.

Proof. Let us prove the necessary condition. The formula η(x1, . . . , xn) = (λ1x1, . . . , λnxn)

defines an element η of Diff (Cn, 0). We claim that the transformation ηk is semisimple

for any k ∈ N. Indeed xi11 . . . xinn +mk+1 is an eigenvector of ηk of eigenvalue λi1
1 . . . λin

n for

1 ≤ i1 + . . . + in ≤ k. Since the classes of the monomials define a basis of m/mk+1, we

deduce that there exists a basis of eigenvectors for ηk. Since φk is conjugated to ηk by a

linear map, φk is semisimple for any k ∈ N.
Let us show the sufficient condition. Since φ1 is semisimple there exists a linear map

ψ1 such that ψ1 ◦ j1φ ◦ ψ−1
1 = (λ1x1, . . . , λnxn) for some (λ1, . . . , λn) ∈ (C∗)n. We denote

η(x1, . . . , xn) = (λ1x1, . . . , λnxn). Let us see that if there exists ψk ∈ Diff (Cn, 0) such that

ψk ◦φ ◦ψ−1
k is equal to η modulo mk+1 (or in other words (ψk ◦φ ◦ψ−1

k )k = ηk) then there

exists ψk+1 ∈ Diff (Cn, 0) such that ψk+1 ◦ φ ◦ ψ−1
k+1 is equal to η modulo mk+2. Moreover

we can choose ψk+1 such that it is equal to ψk modulo mk+1. This result implies that

(ψk)k≥1 defines an element of D̂iff (Cn, 0) such that ψ ◦ φ ◦ ψ−1 = η.

We replace φ with ψk ◦ φ ◦ ψ−1
k without lack of generality. We say that (i1 . . . in; l) is

resonant and we denote (i1 . . . in; l) ∈ R if λl = λi1
1 . . . λin

n . We define

S =


λ1x1 +

∑
|i|=k+1, (i;1)�∈R

a1ix
i, . . . , λnxn +

∑
|i|=k+1, (i;n)�∈R

ani x
i




and

U =


x1 +

∑
|i|=k+1, (i;1)∈R

λ−1
1 a1ix

i, . . . , xn +
∑

|i|=k+1, (i;n)∈R

λ−1
n ani x

i


 .

We have jk+1φ = jk+1(S ◦ U) = jk+1(U ◦ S). It is clear that Uk+1 is unipotent by

Proposition 3.12. Suppose that we prove the existence of αk+1 ∈ Diff (Cn, 0) that is equal

to Id modulo mk+1 and such that αk+1 ◦ S ◦α−1
k+1 coincides with η modulo mk+2. Then it

is clear that Sk+1 is semisimple by the necessary condition and Sk+1Uk+1 is the Jordan-

Chevalley decomposition of φk+1. Since φk+1 is semisimple by hypothesis, we obtain

Uk+1 ≡ Id and then U ≡ Id. In particular αk+1 ◦ φ ◦α−1
k+1 coincides with η modulo mk+2.

Let us diagonalize S modulo mk+2. We define

αk+1 =


x1 +

∑
|i|=k+1, (i;1)�∈R

a1i

λ1 − λi
xi, . . . , xn +

∑
|i|=k+1, (i;n)�∈R

ani

λn − λi
xi


 .

VIII Escuela Doctoral Intercontinental de Matemáticas PUCP - UVA 207
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The diffeomorphism αk+1 ◦ S ◦ α−1
k+1 coincides with η modulo mk+2.

3.4 Formal vector fields

We want to apply the theory of linear algebraic groups to subgroups of Diff (Cn, 0). We will

associate Lie algebras to (yet to be defined) Zariski-closures of subgroups of Diff (Cn, 0).

The algebraic closures are not necessarily contained in Diff (Cn, 0) even for subgroups of

Diff (Cn, 0); we need to consider divergent formal diffeomorphisms in the Zariski-closure.

As a consequence the Lie algebras of the Zariski-closure of a subgroup of Diff (Cn, 0) can

not be considered in general as Lie algebras of analytic vector fields. It is necessary to

consider formal vector fields.

Let us denote by X(Cn, 0) the Lie algebra of (singular) local vector fields defined in the

neighborhood of 0 in Cn. An element X of X(Cn, 0) can be interpreted as a derivation of

the C-algebra On such thatX preserves the maximal ideal of On. Naturally the Lie algebra

X̂(Cn, 0) of formal vector fields in n variables is the set of derivations X of Ôn such that

X(m) ⊂ m. A formal vector field X ∈ X̂(Cn, 0) is determined by X(x1), X(x2), . . . , X(xn).

We obtain

X = X(x1)
∂

∂x1
+ . . .+X(xn)

∂

∂xn
. (7)

Definition 3.14. We define Lk as the Lie algebra of derivations of the C-algebra m/mk+1.

Exercise 3.7. Show that Lk is the Lie algebra of Dk for any k ∈ N.

Analogously as for formal diffeomorphisms the Lie algebra X̂(Cn, 0) can be understood

as a projective limit lim←−k∈N Lk. Given X ∈ X̂(Cn, 0) consider the element (Xk)k≥1 that

defines in lim←−Lk. Since Lk is the Lie algebra of Dk for any k ∈ N, we obtain that

(exp(Xk))k≥1 is a formal diffeomorphism ϕ. Equivalently given t ∈ C the expression

exp(tX) =




∞∑
j=0

tj

j!
Xj(x1), . . . ,

∞∑
j=0

tj

j!
Xj(xn)


 (8)

defines the exponential of tX where X0(f) = f and Xj+1(f) = X(Xj(f)) for all f ∈ Ôn

and j ≥ 0. Equation (8) has to be interpreted as an equality of operators. On the one

hand the image of xk by the operator defined by exp(tX) is equal to xk ◦ exp(tX) by

definition of operator induced by a (maybe formal) diffeomorphism. On the other hand it

has to be
∑∞

j=0(tX)j(xk)/j! by definition of the exponential of the operator tX.
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Algebraic properties of groups of complex analytic local diffeomorphisms

Definition 3.15. We say that a formal vector field X ∈ X̂(Cn, 0) is nilpotent if j1X

is a linear nilpotent vector field (cf. Equation (7)). We denote by X̂N (Cn, 0) the set of

nilpotent formal vector fields.

Remark 3.16. Let X = (Xk)k≥1 ∈ X̂(Cn, 0). Then Xk is nilpotent (as an element of Lk)

for any k ∈ N if and only if X1 is nilpotent. This result is the analogue of Proposition

3.12 for formal vector fields. The proof is similar (but simpler) than for diffeomorphisms.

It is easier to deal with unipotent diffeomorphisms, instead of general ones, since the

formal properties of formal unipotent diffeomorphisms and formal nilpotent vector fields

are analogous.

Proposition 3.17 (cf. [6, 14]). The image of X̂N (Cn, 0) by the exponential map is equal

to D̂iff u(Cn, 0) and exp : X̂N (Cn, 0) → D̂iff u(Cn, 0) is a bijection.

Proof. The fundamental remark behind the proof is that the exponential establishes a

bijection from nilpotent matrices to unipotent matrices. The other ingredient is that Lk

is the Lie algebra of Dk.

Consider X = (Xk)k≥1 ∈ X̂N (Cn, 0). Its exponential exp(X) = (exp(Xk))k≥1 is a

unipotent formal diffeomorphism since exp(Xk) is unipotent and belongs to Dk for any

k ∈ N.
Let φ ∈ D̂iff u(Cn, 0). The map φk is unipotent for k ≥ 1 by definition. The in-

finitesimal generator log φk is nilpotent by construction. Moreover logφk is in the Lie

algebra of 〈φk〉
z
since this group is equal to {exp(t log φk) : t ∈ C} by Proposition 2.4.

Since 〈φk〉
z ⊂ Dk, log φk belongs to the Lie algebra Lk of Dk. Therefore (log φk)k≥1 is a

nilpotent element of X̂(Cn, 0) whose exponential is equal to φ.

It is clear that the correspondences that we defined are inverse of each other.

Definition 3.18. Given ϕ ∈ D̂iff u(Cn, 0) we define its infinitesimal generator logϕ as the

unique element of X̂N (Cn, 0) such that ϕ = exp(logϕ). We define the 1-parameter group

(ϕt)t∈C by ϕt = exp(t logϕ).

It is known by results of Baker, Ecalle and Liverpool that generically the infinitesimal

generator of a local diffeomorphism is a divergent vector field [1] [6] [10] (cf. Remark 3.31).

3.5 Construction of the algebraic closure

In this section we construct the Zariski-closure of a subgroup of D̂iff (Cn, 0) and describe

its basic properties.
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The diffeomorphism αk+1 ◦ S ◦ α−1
k+1 coincides with η modulo mk+2.

3.4 Formal vector fields

We want to apply the theory of linear algebraic groups to subgroups of Diff (Cn, 0). We will

associate Lie algebras to (yet to be defined) Zariski-closures of subgroups of Diff (Cn, 0).

The algebraic closures are not necessarily contained in Diff (Cn, 0) even for subgroups of

Diff (Cn, 0); we need to consider divergent formal diffeomorphisms in the Zariski-closure.

As a consequence the Lie algebras of the Zariski-closure of a subgroup of Diff (Cn, 0) can

not be considered in general as Lie algebras of analytic vector fields. It is necessary to

consider formal vector fields.

Let us denote by X(Cn, 0) the Lie algebra of (singular) local vector fields defined in the

neighborhood of 0 in Cn. An element X of X(Cn, 0) can be interpreted as a derivation of

the C-algebra On such thatX preserves the maximal ideal of On. Naturally the Lie algebra

X̂(Cn, 0) of formal vector fields in n variables is the set of derivations X of Ôn such that

X(m) ⊂ m. A formal vector field X ∈ X̂(Cn, 0) is determined by X(x1), X(x2), . . . , X(xn).

We obtain

X = X(x1)
∂

∂x1
+ . . .+X(xn)

∂

∂xn
. (7)

Definition 3.14. We define Lk as the Lie algebra of derivations of the C-algebra m/mk+1.

Exercise 3.7. Show that Lk is the Lie algebra of Dk for any k ∈ N.

Analogously as for formal diffeomorphisms the Lie algebra X̂(Cn, 0) can be understood

as a projective limit lim←−k∈N Lk. Given X ∈ X̂(Cn, 0) consider the element (Xk)k≥1 that

defines in lim←−Lk. Since Lk is the Lie algebra of Dk for any k ∈ N, we obtain that

(exp(Xk))k≥1 is a formal diffeomorphism ϕ. Equivalently given t ∈ C the expression

exp(tX) =




∞∑
j=0

tj

j!
Xj(x1), . . . ,

∞∑
j=0

tj

j!
Xj(xn)


 (8)

defines the exponential of tX where X0(f) = f and Xj+1(f) = X(Xj(f)) for all f ∈ Ôn

and j ≥ 0. Equation (8) has to be interpreted as an equality of operators. On the one

hand the image of xk by the operator defined by exp(tX) is equal to xk ◦ exp(tX) by

definition of operator induced by a (maybe formal) diffeomorphism. On the other hand it

has to be
∑∞

j=0(tX)j(xk)/j! by definition of the exponential of the operator tX.
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Definition 3.15. We say that a formal vector field X ∈ X̂(Cn, 0) is nilpotent if j1X

is a linear nilpotent vector field (cf. Equation (7)). We denote by X̂N (Cn, 0) the set of

nilpotent formal vector fields.

Remark 3.16. Let X = (Xk)k≥1 ∈ X̂(Cn, 0). Then Xk is nilpotent (as an element of Lk)

for any k ∈ N if and only if X1 is nilpotent. This result is the analogue of Proposition

3.12 for formal vector fields. The proof is similar (but simpler) than for diffeomorphisms.

It is easier to deal with unipotent diffeomorphisms, instead of general ones, since the

formal properties of formal unipotent diffeomorphisms and formal nilpotent vector fields

are analogous.

Proposition 3.17 (cf. [6, 14]). The image of X̂N (Cn, 0) by the exponential map is equal

to D̂iff u(Cn, 0) and exp : X̂N (Cn, 0) → D̂iff u(Cn, 0) is a bijection.

Proof. The fundamental remark behind the proof is that the exponential establishes a

bijection from nilpotent matrices to unipotent matrices. The other ingredient is that Lk

is the Lie algebra of Dk.

Consider X = (Xk)k≥1 ∈ X̂N (Cn, 0). Its exponential exp(X) = (exp(Xk))k≥1 is a

unipotent formal diffeomorphism since exp(Xk) is unipotent and belongs to Dk for any

k ∈ N.
Let φ ∈ D̂iff u(Cn, 0). The map φk is unipotent for k ≥ 1 by definition. The in-

finitesimal generator log φk is nilpotent by construction. Moreover logφk is in the Lie

algebra of 〈φk〉
z
since this group is equal to {exp(t log φk) : t ∈ C} by Proposition 2.4.

Since 〈φk〉
z ⊂ Dk, log φk belongs to the Lie algebra Lk of Dk. Therefore (log φk)k≥1 is a

nilpotent element of X̂(Cn, 0) whose exponential is equal to φ.

It is clear that the correspondences that we defined are inverse of each other.

Definition 3.18. Given ϕ ∈ D̂iff u(Cn, 0) we define its infinitesimal generator logϕ as the

unique element of X̂N (Cn, 0) such that ϕ = exp(logϕ). We define the 1-parameter group

(ϕt)t∈C by ϕt = exp(t logϕ).

It is known by results of Baker, Ecalle and Liverpool that generically the infinitesimal

generator of a local diffeomorphism is a divergent vector field [1] [6] [10] (cf. Remark 3.31).

3.5 Construction of the algebraic closure

In this section we construct the Zariski-closure of a subgroup of D̂iff (Cn, 0) and describe

its basic properties.
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Definition 3.19. We consider the m-adic topology, also known as the Krull topology, in

D̂iff (Cn, 0). The sets of the form

Uk,ϕ = {η ∈ D̂iff (Cn, 0) : jkη = jkϕ}

for k ∈ N and ϕ ∈ D̂iff (Cn, 0) provide a fundamental system of open sets of the topology.

A sequence (η(j))j∈N in D̂iff (Cn, 0) converges to η ∈ D̂iff (Cn, 0) if given any k ∈ N then

there exists m(k) such that jkη(m) = jkη for any m ≥ m(k).

Definition 3.20. Let G be a subgroup of D̂iff (Cn, 0). We define Gk = {φk : φ ∈ G}z.

Lemma 3.21. Let G be a subgroup of D̂iff (Cn, 0). Then we obtain πl,k(Gl) = Gk for all

l ≥ k ≥ 1.

Proof. The map πl,k : Dl → Dk is a surjective morphism of algebraic groups for l ≥ k by

Lemma 3.5. Moreover the image by πl,k of the smallest algebraic group of GL(m/ml+1)

containing {ϕl : ϕ ∈ G} is the smallest algebraic group of GL(m/mk+1) that contains

{ϕk : ϕ ∈ G} by Remark 2.15. Hence we have πl,k(Gl) = Gk if l ≥ k.

Definition 3.22. LetG be a subgroup of D̂iff (Cn, 0). We defineG
z
(orG

(0)
) as lim←−k∈NGk,

more precisely G
z
is the subgroup of D̂iff (Cn, 0) defined by

G
z
= {ϕ ∈ D̂iff (Cn, 0) : ϕk ∈ Gk for all k ∈ N}.

We say that G is pro-algebraic if G = G
z
.

The group G
z
is the (pro-)algebraic closure of G. It is a projective limit of algebraic

groups.

Exercise 3.8. Show that the pro-algebraic closure of a subgroup G of D̂iff (Cn, 0) is

pro-algebraic.

The next results are technical lemmas that we use to characterize the pro-algebraic

subgroups of D̂iff (Cn, 0).

Lemma 3.23. Let Hk be an algebraic subgroup of Dk for k ∈ N. Suppose πl,k(Hl) = Hk

for all l ≥ k ≥ 1. Then lim←−k∈NHk is a pro-algebraic subgroup of D̂iff (Cn, 0). Moreover

the natural map lim←−Hj → Hk is surjective for any k ∈ N.
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Proof. The inverse limit lim←−Hk is contained in D̂iff (Cn, 0) = lim←−Dk.

An inverse system (Sk)k∈N of non-empty sets and surjective maps indexed by the

natural numbers satisfies that the natural projections lim←−j∈N Sj → Sk are surjective for

any k ∈ N. Since (πl,k)|Hl
: Hl → Hk is surjective for l ≥ k ≥ 1, the natural map

lim←−j∈NHj → Hk is surjective for any k ∈ N. In particular we have {ϕk : ϕ ∈ lim←−Hj} = Hk

for k ∈ N and then (lim←−Hk)
(0)

= lim←−Hk.

Remark 3.24. Let us consider an example. Consider the group

D̂iff 1(Cn, 0) := {φ ∈ D̂iff (Cn, 0) : j1φ = Id}

of formal tangent to the identity diffeomorphisms. Denote Hk = {A ∈ Dk : πk,1(A) = Id}.
It is an algebraic subgroup of Dk for any k ∈ N. Moreover we have πl,k(Hl) = Hk for all

l ≥ k ≥ 1. Since D̂iff 1(Cn, 0) = lim←−Hj , it is a pro-algebraic group by Lemma 3.23.

Corollary 3.25. Let G be a subgroup of D̂iff (Cn, 0). Then the natural map lim←−Gj → Gk

is surjective for any k ∈ N.

Proof. We have πl,k(Gl) = Gk if l ≥ k by Lemma 3.21. The result is a consequence of

Lemma 3.23.

We provide two characterizations of pro-algebraic groups in next proposition.

Proposition 3.26. Let G be a subgroup of D̂iff (Cn, 0). Then the following conditions are

equivalent:

1. G is pro-algebraic.

2. {ϕk : ϕ ∈ G} is an algebraic matrix group for any k ∈ N and G is closed in the Krull

topology.

3. G is of the form lim←−k∈NHk where Hk is an algebraic subgroup of Dk and πl,k(Hl) is

contained in Hk for all l ≥ k ≥ 1.

Proof. Let us prove (1) =⇒ (2). Suppose G = G
(0)

. We obtain {ϕk : ϕ ∈ G} = Gk by

Corollary 3.25. Moreover since G
(0)

is closed in the Krull topology by construction, G is

closed in the Krull topology.

Let us show (2) =⇒ (1). The group Gk is equal to {ϕk : ϕ ∈ G} by hypothesis for

any k ∈ N . We claim G
(0) ⊂ G. Indeed given ϕ ∈ G

(0)
and k ∈ N there exists η(k) ∈ G

such that ϕk = (η(k))k for any k ∈ N since G
(0)

= lim←−{ϕk : ϕ ∈ G}. In particular
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Definition 3.19. We consider the m-adic topology, also known as the Krull topology, in

D̂iff (Cn, 0). The sets of the form

Uk,ϕ = {η ∈ D̂iff (Cn, 0) : jkη = jkϕ}

for k ∈ N and ϕ ∈ D̂iff (Cn, 0) provide a fundamental system of open sets of the topology.

A sequence (η(j))j∈N in D̂iff (Cn, 0) converges to η ∈ D̂iff (Cn, 0) if given any k ∈ N then

there exists m(k) such that jkη(m) = jkη for any m ≥ m(k).

Definition 3.20. Let G be a subgroup of D̂iff (Cn, 0). We define Gk = {φk : φ ∈ G}z.

Lemma 3.21. Let G be a subgroup of D̂iff (Cn, 0). Then we obtain πl,k(Gl) = Gk for all

l ≥ k ≥ 1.

Proof. The map πl,k : Dl → Dk is a surjective morphism of algebraic groups for l ≥ k by

Lemma 3.5. Moreover the image by πl,k of the smallest algebraic group of GL(m/ml+1)

containing {ϕl : ϕ ∈ G} is the smallest algebraic group of GL(m/mk+1) that contains

{ϕk : ϕ ∈ G} by Remark 2.15. Hence we have πl,k(Gl) = Gk if l ≥ k.

Definition 3.22. LetG be a subgroup of D̂iff (Cn, 0). We defineG
z
(orG

(0)
) as lim←−k∈NGk,

more precisely G
z
is the subgroup of D̂iff (Cn, 0) defined by

G
z
= {ϕ ∈ D̂iff (Cn, 0) : ϕk ∈ Gk for all k ∈ N}.

We say that G is pro-algebraic if G = G
z
.

The group G
z
is the (pro-)algebraic closure of G. It is a projective limit of algebraic

groups.

Exercise 3.8. Show that the pro-algebraic closure of a subgroup G of D̂iff (Cn, 0) is

pro-algebraic.

The next results are technical lemmas that we use to characterize the pro-algebraic

subgroups of D̂iff (Cn, 0).

Lemma 3.23. Let Hk be an algebraic subgroup of Dk for k ∈ N. Suppose πl,k(Hl) = Hk

for all l ≥ k ≥ 1. Then lim←−k∈NHk is a pro-algebraic subgroup of D̂iff (Cn, 0). Moreover

the natural map lim←−Hj → Hk is surjective for any k ∈ N.
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Proof. The inverse limit lim←−Hk is contained in D̂iff (Cn, 0) = lim←−Dk.

An inverse system (Sk)k∈N of non-empty sets and surjective maps indexed by the

natural numbers satisfies that the natural projections lim←−j∈N Sj → Sk are surjective for

any k ∈ N. Since (πl,k)|Hl
: Hl → Hk is surjective for l ≥ k ≥ 1, the natural map

lim←−j∈NHj → Hk is surjective for any k ∈ N. In particular we have {ϕk : ϕ ∈ lim←−Hj} = Hk

for k ∈ N and then (lim←−Hk)
(0)

= lim←−Hk.

Remark 3.24. Let us consider an example. Consider the group

D̂iff 1(Cn, 0) := {φ ∈ D̂iff (Cn, 0) : j1φ = Id}

of formal tangent to the identity diffeomorphisms. Denote Hk = {A ∈ Dk : πk,1(A) = Id}.
It is an algebraic subgroup of Dk for any k ∈ N. Moreover we have πl,k(Hl) = Hk for all

l ≥ k ≥ 1. Since D̂iff 1(Cn, 0) = lim←−Hj , it is a pro-algebraic group by Lemma 3.23.

Corollary 3.25. Let G be a subgroup of D̂iff (Cn, 0). Then the natural map lim←−Gj → Gk

is surjective for any k ∈ N.

Proof. We have πl,k(Gl) = Gk if l ≥ k by Lemma 3.21. The result is a consequence of

Lemma 3.23.

We provide two characterizations of pro-algebraic groups in next proposition.

Proposition 3.26. Let G be a subgroup of D̂iff (Cn, 0). Then the following conditions are

equivalent:

1. G is pro-algebraic.

2. {ϕk : ϕ ∈ G} is an algebraic matrix group for any k ∈ N and G is closed in the Krull

topology.

3. G is of the form lim←−k∈NHk where Hk is an algebraic subgroup of Dk and πl,k(Hl) is

contained in Hk for all l ≥ k ≥ 1.

Proof. Let us prove (1) =⇒ (2). Suppose G = G
(0)

. We obtain {ϕk : ϕ ∈ G} = Gk by

Corollary 3.25. Moreover since G
(0)

is closed in the Krull topology by construction, G is

closed in the Krull topology.

Let us show (2) =⇒ (1). The group Gk is equal to {ϕk : ϕ ∈ G} by hypothesis for

any k ∈ N . We claim G
(0) ⊂ G. Indeed given ϕ ∈ G

(0)
and k ∈ N there exists η(k) ∈ G

such that ϕk = (η(k))k for any k ∈ N since G
(0)

= lim←−{ϕk : ϕ ∈ G}. In particular
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ϕ = limk→∞ η(k) where the limit is considered in the Krull topology. Since G is closed in

the Krull topology, we obtain ϕ ∈ G. The inclusion G
(0) ⊂ G implies G = G

(0)
and hence

G is pro-algebraic. Moreover we obtain G = G
(0)

= lim←−Gk and then G is the form in item

(3) by Lemma 3.21. We just proved (2) =⇒ (3).

Finally let us prove (3) =⇒ (1). We define Hl,k = πl,k(Hl) for l ≥ k ≥ 1. The group

Hl,k is algebraic since it is the image of an algebraic group by a morphism of algebraic

groups. Since πl′,k = πl,k ◦ πl′,l for l′ ≥ l ≥ k ≥ 1, the sequence (Hl,k)l≥k is decreasing for

any k ∈ N. The sequence stabilizes by the noetherianity of the ring of regular functions of

an affine algebraic variety. We denote Kk = ∩l≥kHl,k. Given l ≥ k ≥ 1 we consider l′ ≥ l

such that Kl = Hl′,l and Kk = Hl′,k. Since πl′,k = πl,k ◦ πl′,l, we deduce πl,k(Kl) = Kk for

all l ≥ k ≥ 1. The construction implies lim←−Kk = lim←−Hk. Thus lim←−Hk is pro-algebraic by

Lemma 3.23.

Remark 3.27. Proposition 3.26 is very useful to show that certain groups are pro-algebraic.

For example consider a family {Gj}j∈J of pro-algebraic subgroups of D̂iff (Cn, 0). Let us

see that ∩j∈JGj is pro-algebraic. We have

πl,k(∩j∈J(Gj)l) ⊂ ∩j∈J(Gj)k for all l ≥ k ≥ 1 and ∩j∈J Gj = lim←−∩j∈J(Gj)k.

Since the intersection of algebraic matrix groups is an algebraic group, the group ∩j∈JGj

is pro-algebraic by item (3) of Proposition 3.26.

Remark 3.28. Invariance properties typically define pro-algebraic groups. Item (3) of

Proposition 3.26 provides an easy way of proving such property. Let us present an example.

Consider f1, . . . , fp ∈ Ôn and

G = {ϕ ∈ D̂iff (Cn, 0) : fj ◦ ϕ ≡ fj for all 1 ≤ j ≤ p}.

We define

Hk = {A ∈ Dk : A(fj +mk+1) = fj +mk+1 for all 1 ≤ j ≤ p}

for k ∈ N. It is clear that Hk is an algebraic subgroup of Dk for k ∈ N. Moreover we have

πl,k(Hl) ⊂ Hk for l ≥ k ≥ 1. Since f ◦ φ − f = 0 is equivalent to f ◦ φ − f ∈ mk for any

k ∈ N, the group lim←−Hk is equal to G. Moreover G is pro-algebraic by Lemma 3.23.

The power of item (3) of Proposition 3.26 is that in order to show that G is pro-

algebraic we do not need to find {ϕk : ϕ ∈ G} explicitly; in particular we could have

{ϕk : ϕ ∈ G} � Hk. Moreover, it allows us to exploit that a pro-algebraic group can be

expressed in several ways as an inverse limit of algebraic groups.
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Algebraic properties of groups of complex analytic local diffeomorphisms

Let us check out that the Jordan-Chevalley decomposition holds in the context of

pro-algebraic groups.

Proposition 3.29. Let φ ∈ D̂iff (Cn, 0) be an element of a pro-algebraic group G. Then

φs, φu belong to G.

Proof. We have

φ ∈ G = G
z
= {ϕ ∈ D̂iff (Cn, 0) : ϕk ∈ Gk for all k ∈ N}.

The transformations φk,s and φk,u belong to Gk for any k ∈ N by Chevalley’s theorem.

Thus φs = (φk,s)k≥1 and φu = (φk,u)k≥1 belong to lim←−Gk.

Next we calculate the algebraic closure of a cyclic unipotent group.

Remark 3.30. Let us calculate 〈φ〉z for φ ∈ D̂iff u(Cn, 0). We denote G = 〈φ〉. Since

φk is unipotent for any k ∈ N, the group Gk = 〈φk〉
z
is equal to the 1-parameter group

{φt
k : t ∈ C}. Clearly we obtain

{exp(t log φ) : t ∈ C} ⊂ 〈φ〉z.

Let us show the reverse inclusion. An element ψ of lim←−Gj is of the form (exp(tj log φ)j)j≥1.

In order to obtain G
z
= {exp(t log φ) : t ∈ C} it suffices to show that {exp(t log φ) : t ∈ C}

is closed in the Krull topology. This is a consequence of the injectivity of the map

πk : {exp(t log φ) : t ∈ C} → Dk

exp(t log φ) �→ (exp(t log φ))k

for some k ∈ N. The map πk is trivially injective for any k ∈ N if log φ ≡ 0. Otherwise

consider k ∈ N such that (log φ)k �≡ 0. The map πk is injective since (exp(t log φ))k = Id

implies t(log φ)k = 0 and then t = 0.

Remark 3.31. Let φ ∈ D̂iff u(Cn, 0). Since j1 log φ is nilpotent, it is equal to
∑n−1

j=1 δjxj+1
∂

∂xj

up to a linear change of coordinates where δj ∈ {0, 1} for any 1 ≤ j < n. Let us define

ord(xj) = n− 1 + j for 1 ≤ j ≤ n, ord(0) = ∞ and then

ord


∑

|i|≥1

aix
i


 = min





n∑
j=1

ij(n− 1 + j) : ai �= 0


 if

∑
|i|≥1

aix
i �= 0.

The property ord(x1) < . . . < ord(xn) < 2ord(x1) implies ord(f) < ord((log φ)(f)) for any

f ∈ m. The minimum possible order for a monomial is n whereas the maximum possible
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ϕ = limk→∞ η(k) where the limit is considered in the Krull topology. Since G is closed in
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(0) ⊂ G implies G = G
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and hence

G is pro-algebraic. Moreover we obtain G = G
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= lim←−Gk and then G is the form in item

(3) by Lemma 3.21. We just proved (2) =⇒ (3).

Finally let us prove (3) =⇒ (1). We define Hl,k = πl,k(Hl) for l ≥ k ≥ 1. The group
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is pro-algebraic by item (3) of Proposition 3.26.
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Proposition 3.26 provides an easy way of proving such property. Let us present an example.

Consider f1, . . . , fp ∈ Ôn and

G = {ϕ ∈ D̂iff (Cn, 0) : fj ◦ ϕ ≡ fj for all 1 ≤ j ≤ p}.

We define

Hk = {A ∈ Dk : A(fj +mk+1) = fj +mk+1 for all 1 ≤ j ≤ p}

for k ∈ N. It is clear that Hk is an algebraic subgroup of Dk for k ∈ N. Moreover we have

πl,k(Hl) ⊂ Hk for l ≥ k ≥ 1. Since f ◦ φ − f = 0 is equivalent to f ◦ φ − f ∈ mk for any

k ∈ N, the group lim←−Hk is equal to G. Moreover G is pro-algebraic by Lemma 3.23.

The power of item (3) of Proposition 3.26 is that in order to show that G is pro-

algebraic we do not need to find {ϕk : ϕ ∈ G} explicitly; in particular we could have

{ϕk : ϕ ∈ G} � Hk. Moreover, it allows us to exploit that a pro-algebraic group can be

expressed in several ways as an inverse limit of algebraic groups.
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Proof. We have
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= {ϕ ∈ D̂iff (Cn, 0) : ϕk ∈ Gk for all k ∈ N}.

The transformations φk,s and φk,u belong to Gk for any k ∈ N by Chevalley’s theorem.

Thus φs = (φk,s)k≥1 and φu = (φk,u)k≥1 belong to lim←−Gk.

Next we calculate the algebraic closure of a cyclic unipotent group.

Remark 3.30. Let us calculate 〈φ〉z for φ ∈ D̂iff u(Cn, 0). We denote G = 〈φ〉. Since

φk is unipotent for any k ∈ N, the group Gk = 〈φk〉
z
is equal to the 1-parameter group

{φt
k : t ∈ C}. Clearly we obtain

{exp(t log φ) : t ∈ C} ⊂ 〈φ〉z.

Let us show the reverse inclusion. An element ψ of lim←−Gj is of the form (exp(tj log φ)j)j≥1.

In order to obtain G
z
= {exp(t log φ) : t ∈ C} it suffices to show that {exp(t log φ) : t ∈ C}

is closed in the Krull topology. This is a consequence of the injectivity of the map

πk : {exp(t log φ) : t ∈ C} → Dk

exp(t log φ) �→ (exp(t log φ))k

for some k ∈ N. The map πk is trivially injective for any k ∈ N if log φ ≡ 0. Otherwise

consider k ∈ N such that (log φ)k �≡ 0. The map πk is injective since (exp(t log φ))k = Id

implies t(log φ)k = 0 and then t = 0.

Remark 3.31. Let φ ∈ D̂iff u(Cn, 0). Since j1 log φ is nilpotent, it is equal to
∑n−1

j=1 δjxj+1
∂

∂xj

up to a linear change of coordinates where δj ∈ {0, 1} for any 1 ≤ j < n. Let us define

ord(xj) = n− 1 + j for 1 ≤ j ≤ n, ord(0) = ∞ and then
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 = min





n∑
j=1

ij(n− 1 + j) : ai �= 0


 if
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|i|≥1

aix
i �= 0.

The property ord(x1) < . . . < ord(xn) < 2ord(x1) implies ord(f) < ord((log φ)(f)) for any
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order for a monomial of degree less or equal than j is (2n − 1)j. Since applying logφ

increases the order, we obtain (logφ)(2n−1)j−n+1(m) ⊂ mj+1. Thus

exp(t log φ) =


∑

|i|≥1

a1i (t)x
i, . . . ,

∑
|i|≥1

ani (t)x
i




satisfies aki (t) ∈ C[t] and deg aki ≤ |i|(2n− 1)− n for every choice of i and k. The degree

of aki is bounded by a linear function of |i|. This property induces a dichotomy: either

exp(t log φ) converges only for t in a polar set (that is, a set of logarithmic capacity 0)

or log φ converges [17], cf. [22]. A polar set has vanishing Hausdorff dimension and in

particular zero Lebesgue measure. Generically 〈φ〉z contains (many) divergent elements.

Remark 3.32. Let φ ∈ D̂iff (Cn, 0) be a semisimple formal diffeomorphism. There exists a

formal change of coordinates ψ ∈ D̂iff (Cn, 0) such that ψ ◦φ ◦ψ−1 = (λ1x1, . . . , λnxn) for

some (λ1, . . . , λn) ∈ (C∗)n The group 〈φ〉z is equal to ψ−1 ◦Gλ ◦ ψ (cf. Definition 2.7).

Exercise 3.9. Show the analogue of Proposition 2.12 for formal diffeomorphisms. More

precisely, given φ ∈ D̂iff (Cn, 0) prove that all elements of 〈φs〉
z
commute with all elements

of 〈φu〉
z
and that 〈φ〉z is the group generated by 〈φs〉

z
and 〈φu〉

z
.

Definition 3.33. Let G be a subgroup of D̂iff (Cn, 0). Since Gk is an algebraic group of

matrices and in particular a Lie group, we can define the conected component Gk,0 of the

identity in Gk. We also consider the set Gk,u of unipotent elements of Gk.

Definition 3.34. Let G be a subgroup of D̂iff (Cn, 0). We define

G
z
0 = {ϕ ∈ D̂iff (Cn, 0) : ϕk ∈ Gk,0 for all k ∈ N}

and

G
z
u = {ϕ ∈ D̂iff (Cn, 0) : ϕk ∈ Gk,u for all k ∈ N}.

The group G
z
0 is the natural candidate to connected component of Id of G

z
. Such a

component is an algebraic group in the linear case; the analogue in the pro-algebraic case

is the subject of next proposition. Moreover we will show that membership in G
z
0 can be

checked out on the linear part.

Proposition 3.35. Let G be a subgroup of D̂iff (Cn, 0). Then G
z
0 is a pro-algebraic sub-

group of D̂iff (Cn, 0) such that G
z
0 = {ϕ ∈ G

z
: ϕ1 ∈ G1,0}.
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Proof. Let l ≥ k ≥ 1. Since Gl,0 is algebraic, πl,k(Gl,0) is algebraic by Proposition 2.14.

The dimension of Gk = πl,k(Gl) is equal to the dimension of πl,k(Gl,0). Since Gl,0 is

connected, πl,k(Gl,0) is connected and hence contained in Gk,0. On top of that the algebraic

groups πl,k(Gl,0) and Gk,0 have the same dimension and Gk,0 is connected, we obtain

πl,k(Gl,0) = Gk,0 (we just proved that given a morphism α : H → H ′ of algebraic groups

then α(H)0 = α(H0), cf. [3, Chapter I.1, Corollary 1,.4, p. 47]). In particular the

image by πl,k of a connected component of Gl is a connected component of Gk. The

map πl,k induces a map between connected components of Gl and connected components

of Gk that is clearly surjective since πl,k is surjective by Lemma 3.5. Let us show that

such correspondence is injective. Consider a connected component C of Gl such that

πl,k(C) = Gk,0. Then there exists A ∈ C such that πl,k(A) = Id. Thus A is unipotent by

Proposition 3.12 and it belongs to Gl,0 by Exercise 2.10. Obviously we obtain C = Gl,0.

The discussion above implies π−1
l,k (Gk,0) = Gl,0 and πl,k(Gl,0) = Gk,0 for all l ≥ k ≥ 1.

We deduce G
z
0 = {ϕ ∈ G

z
: ϕ1 ∈ G1,0}.

Since G
z
0 = lim←−k∈NGk,0 and πl,k : Gl,0 → Gk,0 is surjective for all l ≥ k ≥ 1, the group

G
z
0 is pro-algebraic by Lemma 3.23.

We prove next that G
z
u is a pro-algebraic group if G is solvable. The next lemma is

the analogue of Lemma 2.30 for groups of local diffeomorphisms.

Lemma 3.36. Let G be a subgroup of D̂iff (Cn, 0). Then

• �(G
z
) = �(G).

• exp(t logϕ) ∈ G
z
u for all ϕ ∈ G

z
u and t ∈ C.

• G
z
= G

z
u if G is unipotent.

• Suppose G is solvable. Then G
z
u is a pro-algebraic normal subgroup of G

z
.

The three first items were proved in [13].

Proof. We have

�(G) = max
k∈N

�({φk : φ ∈ G}) = max
k∈N

�(Gk) = �(G
z
).

The first and third equalities are immediate. The second equality is a consequence of the

first item of Lemma 2.30.
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order for a monomial of degree less or equal than j is (2n − 1)j. Since applying logφ

increases the order, we obtain (logφ)(2n−1)j−n+1(m) ⊂ mj+1. Thus

exp(t log φ) =
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i, . . . ,

∑
|i|≥1

ani (t)x
i




satisfies aki (t) ∈ C[t] and deg aki ≤ |i|(2n− 1)− n for every choice of i and k. The degree

of aki is bounded by a linear function of |i|. This property induces a dichotomy: either

exp(t log φ) converges only for t in a polar set (that is, a set of logarithmic capacity 0)

or log φ converges [17], cf. [22]. A polar set has vanishing Hausdorff dimension and in

particular zero Lebesgue measure. Generically 〈φ〉z contains (many) divergent elements.

Remark 3.32. Let φ ∈ D̂iff (Cn, 0) be a semisimple formal diffeomorphism. There exists a

formal change of coordinates ψ ∈ D̂iff (Cn, 0) such that ψ ◦φ ◦ψ−1 = (λ1x1, . . . , λnxn) for

some (λ1, . . . , λn) ∈ (C∗)n The group 〈φ〉z is equal to ψ−1 ◦Gλ ◦ ψ (cf. Definition 2.7).

Exercise 3.9. Show the analogue of Proposition 2.12 for formal diffeomorphisms. More

precisely, given φ ∈ D̂iff (Cn, 0) prove that all elements of 〈φs〉
z
commute with all elements

of 〈φu〉
z
and that 〈φ〉z is the group generated by 〈φs〉

z
and 〈φu〉

z
.

Definition 3.33. Let G be a subgroup of D̂iff (Cn, 0). Since Gk is an algebraic group of

matrices and in particular a Lie group, we can define the conected component Gk,0 of the

identity in Gk. We also consider the set Gk,u of unipotent elements of Gk.

Definition 3.34. Let G be a subgroup of D̂iff (Cn, 0). We define

G
z
0 = {ϕ ∈ D̂iff (Cn, 0) : ϕk ∈ Gk,0 for all k ∈ N}

and

G
z
u = {ϕ ∈ D̂iff (Cn, 0) : ϕk ∈ Gk,u for all k ∈ N}.

The group G
z
0 is the natural candidate to connected component of Id of G

z
. Such a

component is an algebraic group in the linear case; the analogue in the pro-algebraic case

is the subject of next proposition. Moreover we will show that membership in G
z
0 can be

checked out on the linear part.

Proposition 3.35. Let G be a subgroup of D̂iff (Cn, 0). Then G
z
0 is a pro-algebraic sub-

group of D̂iff (Cn, 0) such that G
z
0 = {ϕ ∈ G

z
: ϕ1 ∈ G1,0}.
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Proof. Let l ≥ k ≥ 1. Since Gl,0 is algebraic, πl,k(Gl,0) is algebraic by Proposition 2.14.

The dimension of Gk = πl,k(Gl) is equal to the dimension of πl,k(Gl,0). Since Gl,0 is

connected, πl,k(Gl,0) is connected and hence contained in Gk,0. On top of that the algebraic

groups πl,k(Gl,0) and Gk,0 have the same dimension and Gk,0 is connected, we obtain

πl,k(Gl,0) = Gk,0 (we just proved that given a morphism α : H → H ′ of algebraic groups

then α(H)0 = α(H0), cf. [3, Chapter I.1, Corollary 1,.4, p. 47]). In particular the

image by πl,k of a connected component of Gl is a connected component of Gk. The

map πl,k induces a map between connected components of Gl and connected components

of Gk that is clearly surjective since πl,k is surjective by Lemma 3.5. Let us show that

such correspondence is injective. Consider a connected component C of Gl such that

πl,k(C) = Gk,0. Then there exists A ∈ C such that πl,k(A) = Id. Thus A is unipotent by

Proposition 3.12 and it belongs to Gl,0 by Exercise 2.10. Obviously we obtain C = Gl,0.

The discussion above implies π−1
l,k (Gk,0) = Gl,0 and πl,k(Gl,0) = Gk,0 for all l ≥ k ≥ 1.

We deduce G
z
0 = {ϕ ∈ G

z
: ϕ1 ∈ G1,0}.

Since G
z
0 = lim←−k∈NGk,0 and πl,k : Gl,0 → Gk,0 is surjective for all l ≥ k ≥ 1, the group

G
z
0 is pro-algebraic by Lemma 3.23.

We prove next that G
z
u is a pro-algebraic group if G is solvable. The next lemma is

the analogue of Lemma 2.30 for groups of local diffeomorphisms.

Lemma 3.36. Let G be a subgroup of D̂iff (Cn, 0). Then

• �(G
z
) = �(G).

• exp(t logϕ) ∈ G
z
u for all ϕ ∈ G

z
u and t ∈ C.

• G
z
= G

z
u if G is unipotent.

• Suppose G is solvable. Then G
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u is a pro-algebraic normal subgroup of G

z
.

The three first items were proved in [13].

Proof. We have

�(G) = max
k∈N

�({φk : φ ∈ G}) = max
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Given ϕ ∈ G
z
u the group 〈ϕ〉z is contained in G

z
and it is equal to {exp(t logϕ) : t ∈ C}

by Remark 3.30. Since t logϕ is nilpotent for t ∈ C, the elements of 〈ϕ〉z are contained in

G
z
u by Proposition 3.17.

Suppose G is unipotent. Since {φk : φ ∈ G} is unipotent, its Zariski-closure Gk is

unipotent for any k ∈ N by Lemma 2.30. Thus G
z
= lim←−Gk is unipotent by Proposition

3.12.

Suppose G is solvable. The set Gk,u is an algebraic normal connected subgroup of

the solvable group Gk for any k ∈ N by Lemma 2.30. We have π−1
l,k (Gk,u) = Gl,u for all

l ≥ k ≥ 1 by Proposition 3.12. Since πl,k(Gl) = Gk by Lemma 3.21, hence πl,k(Gl,u) = Gk,u

for all l ≥ k ≥ 1. Therefore G
z
u = lim←−Gk,u is a pro-algebraic group by Lemma 3.23.

Moreover since Gk,u is normal in Gk for any k ∈ N, the group G
z
u is normal in G

z
.

Remark 3.37. Let G be a solvable subgroup of Diff(Cn, 0). Since membership in G
z
0 and

G
z
u can be checked out in the first jet, these groups have finite codimension in G

z
. Indeed

the kernels of the natural maps

G
z → G1/G1,u and G

z → G1/G1,0

are equal to G
z
u and G

z
0 respectively by Propositions 3.12 and 3.35. In particular G

z
/G

z
0

is a finite group.

Proposition 3.38. Let φ ∈ D̂iff (Cn, 0). Consider m ∈ Z \ {0} such that φm ∈ 〈φ〉z0.
Then we obtain 〈φm〉z = 〈φ〉z0.

Proof. We denote G = 〈φ〉. We have φm
k ∈ Gk,0 for any k ∈ N by definition of G

z
0.

Proposition 2.24 implies 〈φm
k 〉z = Gk,0 for any k ∈ N. We obtain 〈φm〉z = G

z
0 = 〈φ〉z0 by

construction of the pro-algebraic closure and definition of G
z
0.

We keep reproducing parts of the theory of algebraic matrix groups for formal diffeo-

morphisms. Next we associate Lie algebras to pro-algebraic groups.

Definition 3.39. Let G be a subgroup of D̂iff (Cn, 0). We define the set

g = {X ∈ X̂(Cn, 0) : Xk ∈ gk for all k ∈ N}

where gk is the Lie algebra of Gk. We say that g is the Lie algebra of G
z
.

Suppose G is solvable, we define

gN = {X ∈ X̂(Cn, 0) : Xk ∈ gk,u for all k ∈ N}

where gk,u is the Lie algebra of Gk,u. We say that gN is the Lie algebra of G
z
u.
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Remark 3.40. There are several possible definitions of Lie algebra of G
z
. Namely we can

proceed as in Definition 3.39 or we can consider {X ∈ X̂(Cn, 0) : exp(tX) ∈ G
z ∀ t ∈ C}.

We show in next proposition that both choices are equivalent.

The Lie algebra of a pro-algebraic subgroup of D̂iff (Cn, 0) shares analogous properties

with the finite dimensional case.

Proposition 3.41 ([13, Proposition 2]). Let G be a subgroup of D̂iff (Cn, 0). Then g

is equal to {X ∈ X̂(Cn, 0) : exp(tX) ∈ G
z ∀ t ∈ C} and G

z
0 is generated by the set

{exp(X) : X ∈ g}. Moreover if G is unipotent then the map

exp : g → G
z

is a bijection and g is a Lie algebra of nilpotent formal vector fields.

Proof. The first statement is a consequence of the definition of Lie algebra of an algebraic

matrix group applied to Gk for k ∈ N.
Given the map πl,k : Gl → Gk for l ≥ k ≥ 1 we can consider the map (dπl,k)Id : gl → gk

given by the differential of πl,k at Id. It is the restriction to gl of the forgetful natural

map Lk+1 → Lk. The map (dπl,k)Id satisfies (dπl,k)Id(gl) ⊂ gk.

Let A ∈ Gl. The image of a small neighborhood U of A in Gl is a manifold whose

dimension is the rank of (dπl,k)Id by the constant rank theorem (the rank of the maps

(dπl,k)B for B ∈ Gl is constant by the homogeneity of algebraic groups). We deduce that

Gk is the union of countably closed (in the usual topology) sets contained in manifolds of

dimension rk((dπl,k)Id). Since Gk is a smooth manifold of dimension dim(gk) we deduce

rk((dπl,k)Id) = dim(gk). Otherwise we have rk((dπl,k)Id) < dim(gk) and Gk is the union of

countably nowhere-dense closed sets; this contradicts the Baire category theorem. Since

(dπl,k)Id(gl) ⊂ gk and both complex vector spaces have the same dimension we obtain

(dπl,k)Id(gl) = gk. The last two paragraphs again describe a well-known fact about al-

gebraic groups: the surjectivity of the differential map at Id of a surjective morphism of

algebraic groups in characteristic 0 (cf. [3, Chapter II.7, p. 105]).

Since g = {X ∈ X̂(Cn, 0) : exp(tX) ∈ G
z
for all t ∈ C}, the set {exp(X) : X ∈ g} is

contained in G
z
0. Let us show that G

z
0 is generated by {exp(X) : X ∈ g}. Let φ ∈ G

z
0.

Then φ1 belongs to G1,0 and as a consequence φ1 is of the form exp(Y1) ◦ . . . ◦ exp(Yp)

for some Y1, . . . , Yp in g1 by Proposition 2.22. Since all the maps (dπl,k)Id : gl → gk are

surjective for l ≥ k ≥ 1, the natural projection lim←− gk = g → g1 is surjective. Thus there

exists Xj ∈ g such that it induces the derivation Yj of m/m2 for any 1 ≤ j ≤ p. The
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Given ϕ ∈ G
z
u the group 〈ϕ〉z is contained in G

z
and it is equal to {exp(t logϕ) : t ∈ C}
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z
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z
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z
u = lim←−Gk,u is a pro-algebraic group by Lemma 3.23.
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z
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z
.
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z
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G
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z
. Indeed

the kernels of the natural maps

G
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z → G1/G1,0
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z
u and G

z
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z
/G

z
0
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z
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z
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diffeomorphism

ψ := exp(−Xp) ◦ . . . exp(−X1) ◦ φ

has identity linear part by construction. We are done since logψ belongs to g by Remark

3.30.

Suppose G is unipotent. Hence G
z
is unipotent by Lemma 3.36. The Lie algebra g1

of the unipotent group G1 consists of nilpotent matrices. Since lim←− gk = g we deduce that

all elements of g are nilpotent by Remark 3.16. The map exp : g → G
z
is injective since

exp : X̂N (Cn, 0) → D̂iff u(Cn, 0) is injective (Proposition 3.17). Finally exp : g → G
z
is is

surjective since logφ ∈ g for any φ ∈ G
z
by Remark 3.30.

Remark 3.42. The term “connected component of the identity of G
z
” for G

z
0 is completely

justified. On the one hand G
z
/G

z
0 is a finite group by Remark 3.37. On the other hand

every element ϕ of G
z
0 is of the form exp(X1) ◦ . . . ◦ exp(Xk) where X1, . . . , Xk ∈ g by

Proposition 3.41. Hence exp(tX1)◦ . . .◦ exp(tXk) describes a path connecting the identity

with ϕ in G
z
0 when t varies in [0, 1].

Corollary 3.43. Let G be a solvable subgroup of D̂iff (Cn, 0). Then gN is a complex Lie

algebra of nilpotent formal vector fields such that

exp : gN → G
z
u

is a bijection.

Proof. Denote H = G
z
u. Then H is a solvable unipotent pro-algebraic group by Lemma

3.36. Since gN is the Lie algebra of H, the result is a consequence of Proposition 3.41.

3.6 Normal forms

Let us present in the next sections some simple consequences of the previous constructions.

They are easily deduced from the Jordan-Chevalley decomposition and the properties of

pro-algebraic groups.

Let φ ∈ D̂iff (C, 0). We can obtain a weak formal normal form for φ by linearizing its

semisimple part. Next, we use this strategy to obtain the theorem of formal diagonalization

of local diffeomorphisms with almost no calculations.

Proposition 3.44. Let (λ1, . . . , λn) ∈ (C∗)n. Then there exists a non-semisimple φ ∈
Diff (Cn, 0) such that j1φ = (λ1x1, . . . , λnxn) if and only if there exists a multi-index

i ∈ (N ∪ {0})n such that |i| ≥ 2 and λi = λj for some 1 ≤ j ≤ n.
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Proof. We denote L(x1, . . . , xn) = (λ1x1, . . . , λnxn). Let us show the necessary condition.

We have that for

φ := L ◦ (x1, . . . , xj−1, xj + xi, xj+1, . . . , xn)

the right hand side is its Jordan-Chevally decomposition since the diffeomorphisms in the

right hand side commute. Hence φ is not semisimple.

Suppose there exists a non-semisimple φ ∈ D̂iff (Cn, 0) with j1φ = L. By Proposition

3.13 (and its proof) there exists ψ ∈ D̂iff (Cn, 0) such that j1ψ = Id and ψ ◦φs ◦ψ−1 = L.

We denote φ̂u = ψ ◦ φu ◦ ψ−1. The formal diffeomorphism

φ̂u(x1, . . . , xn) =


x1 +

∑
|i|≥2

a1i (t)x
i, . . . , xn +

∑
|i|≥2

ani (t)x
i




is non-trivial and commutes with L. Hence we obtain λi = λj for any multi-index i such

that aji �= 0.

Let us consider the case n = 1. Fix λ ∈ C∗. Then any element φ of Diff (C, 0) (or

D̂iff (C, 0)) such that j1φ = λx is formally linearizable if and only if λ is not a root of the

unit.

3.7 Transferring properties to infinitesimal generators

Let us show a well-known property of unipotent diffeomorphisms. The result can be easily

proved without considering pro-algebraic groups, but anyway the theory provides an easy

conceptual proof.

Lemma 3.45. Let φ, ψ ∈ D̂iff u(Cn, 0). Then [log φ, logψ] = 0 if and only if φ commutes

with ψ.

Proof. The definition of Lie bracket implies that [logφ, logψ] = 0 if and only if

exp(t log φ) ◦ exp(s logψ) = exp(s logψ) ◦ exp(t log φ)

for all t, s ∈ C. This implies immediately the sufficient condition. Let us show the

necessary condition.

The centralizer Z(ψ) = {η ∈ D̂iff (Cn, 0) : ψ ◦ η ≡ η ◦ ψ} is a pro-algebraic group

containing φ (cf. Remark 3.28). In particular it contains 〈φ〉z. Thus we obtain

ψ ◦ exp(t log φ) = exp(t log φ) ◦ ψ

for any t ∈ C. We deduce exp(t log φ) ◦ exp(s logψ) = exp(s logψ) ◦ exp(t log φ) for all

t, s ∈ C analogously. Therefore [log φ, logψ] vanishes.
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has identity linear part by construction. We are done since logψ belongs to g by Remark
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surjective since log φ ∈ g for any φ ∈ G
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is a bijection.
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3.36. Since gN is the Lie algebra of H, the result is a consequence of Proposition 3.41.
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Let us present in the next sections some simple consequences of the previous constructions.

They are easily deduced from the Jordan-Chevalley decomposition and the properties of
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Let φ ∈ D̂iff (C, 0). We can obtain a weak formal normal form for φ by linearizing its

semisimple part. Next, we use this strategy to obtain the theorem of formal diagonalization

of local diffeomorphisms with almost no calculations.
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Algebraic properties of groups of complex analytic local diffeomorphisms
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We have that for
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the right hand side is its Jordan-Chevally decomposition since the diffeomorphisms in the

right hand side commute. Hence φ is not semisimple.
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is non-trivial and commutes with L. Hence we obtain λi = λj for any multi-index i such
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Let us consider the case n = 1. Fix λ ∈ C∗. Then any element φ of Diff (C, 0) (or
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with ψ.
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necessary condition.
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containing φ (cf. Remark 3.28). In particular it contains 〈φ〉z. Thus we obtain

ψ ◦ exp(t log φ) = exp(t log φ) ◦ ψ
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3.8 First integrals

Let us see how the theory of pro-algebraic groups can dramatically simplify some proofs

regarding invariance properties.

Proposition 3.46. Let us consider n elements f1, . . . , fn of the field of fractions of Ôn.

Suppose df1 ∧ . . . ∧ dfn �≡ 0. Then the group

G = {φ ∈ D̂iff (Cn, 0) : fj ◦ φ ≡ fj for all 1 ≤ j ≤ n}

is finite.

Proof. The group G is pro-algebraic. This result is proved for f1, . . . , fn ∈ Ôn in Remark

3.28. The general case can be showed analogously.

Consider an element X =
∑n

j=1 aj∂/∂xj in the Lie algebra L(G) of G. By definition

we have

fj ◦ exp(tX) ≡ fj for all t ∈ C =⇒ X(fj) = lim
t→0

fj ◦ exp(tX)− fj
t

≡ 0

for any 1 ≤ j ≤ n. The property X(fj) = 0 for any 1 ≤ j ≤ n is equivalent to




∂f1
∂x1

∂f1
∂x2

. . . ∂f1
∂xn

∂f2
∂x1

∂f2
∂x2

. . . ∂f2
∂xn

...
...

. . .
...

∂fn
∂x1

∂fn
∂x2

. . . ∂fn
∂xn







a1

a2
...

an




=




0

0
...

0




.

Since df1 ∧ . . . ∧ dfn �≡ 0, the n × n matrix in the previous equation has a non-vanishing

determinant and then X ≡ 0. Hence L(G) is trivial and G
z
0 is the trivial group by

Proposition 3.41. Since G/G
z
0 is finite by Remark 3.37, G is finite.

3.9 Finding invariant curves

Let us see that the Jordan-Chevalley decomposition can be used to find invariant curves

for a local diffeomorphism or one of its iterates.

Let us consider first an example. We define

φ(x, y) = (iye−xy, ixexy).

Does φ have invariant curves? And what about φp where p ∈ N?
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Let X = xy(x∂/∂x− y∂/∂y). Since

φ(x, y) = (iy, ix) ◦ (xexy, ye−xy) = (xexy, ye−xy) ◦ (iy, ix),

we have φs(x, y) = (iy, ix) and φu(x, y) = (xexy, ye−xy) = exp(X). Consider p ∈ N and a

germ of curve γ at (0, 0) such that φp(γ) = γ. Then Gγ = {ψ ∈ D̂iff (C2, 0) : ψ(γ) = γ} is

a pro-algebraic group containing φp. Since φp
s ◦ φp

u is the Jordan-Chevalley decomposition

of φp, we obtain φp
s, φ

p
u ∈ Gγ by Proposition 3.29. Remark 3.30 implies

〈φp
u〉

z
= 〈φu〉

z
= {exp(t log φu) : t ∈ C};

in particular φu ∈ Gγ and γ is an invariant curve of the formal vector field logφu. Since

log φu = X and X(xy) ≡ 0, we deduce that the axis are the unique curves that are

invariant by log φu. Therefore both axis are 2-periodic and no other curve is invariant or

even periodic by φ.

Let us show that the periods of periodic curves are uniformly bounded.

Proposition 3.47. Let φ ∈ D̂iff (Cn, 0). There exists p ∈ N such that φp(γ) = γ for any

formal periodic curve γ. Moreover every formal periodic curve is invariant if φ ∈ 〈φ〉z0.

Proof. Let p ∈ N such that φp ∈ 〈φ〉z0. Given a formal periodic curve γ consider the

pro-algebraic group Gγ = {η ∈ D̂iff (Cn, 0) : η(γ) = γ}. There exists q ∈ N such that

φpq ∈ Gγ . In particular we obtain 〈φpq〉z ⊂ Gγ . Since 〈φpq〉z = 〈φ〉z0 by Proposition 3.38,

we deduce φp ∈ Gγ .

4 Derived series

Solvable subgroups of Diff (Cn, 0) provide geometrical actions on a neighborhood of a point

by solvable groups. A natural question is how the dimension n restricts the complexity of

such actions. A simpler problem is studying wether or not the derived lengths of solvable

subgroups of Diff (Cn, 0) is bounded by a function of n and if that is the case then finding

the sharpest upper bound. Since a pro-algebraic group G of D̂iff (Cn, 0) and its pro-

algebraic closure G
(0)

have the same derived length by Lemma 3.36 and the properties of

G
(0)
0 can be understood in terms of its Lie algebra, it is natural to consider this problem

in the context of pro-algebraic groups.

We will see later on that the derived group of a pro-algebraic subgroup of D̂iff (Cn, 0)

is not necessarily pro-algebraic (section 5). We need to define the analogue of the derived

group in the context of pro-algebraic groups.
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we have

fj ◦ exp(tX) ≡ fj for all t ∈ C =⇒ X(fj) = lim
t→0

fj ◦ exp(tX)− fj
t

≡ 0

for any 1 ≤ j ≤ n. The property X(fj) = 0 for any 1 ≤ j ≤ n is equivalent to




∂f1
∂x1

∂f1
∂x2

. . . ∂f1
∂xn

∂f2
∂x1

∂f2
∂x2

. . . ∂f2
∂xn

...
...

. . .
...

∂fn
∂x1

∂fn
∂x2

. . . ∂fn
∂xn







a1

a2
...

an




=




0

0
...

0




.

Since df1 ∧ . . . ∧ dfn �≡ 0, the n × n matrix in the previous equation has a non-vanishing

determinant and then X ≡ 0. Hence L(G) is trivial and G
z
0 is the trivial group by

Proposition 3.41. Since G/G
z
0 is finite by Remark 3.37, G is finite.

3.9 Finding invariant curves

Let us see that the Jordan-Chevalley decomposition can be used to find invariant curves

for a local diffeomorphism or one of its iterates.

Let us consider first an example. We define

φ(x, y) = (iye−xy, ixexy).

Does φ have invariant curves? And what about φp where p ∈ N?
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Let X = xy(x∂/∂x− y∂/∂y). Since

φ(x, y) = (iy, ix) ◦ (xexy, ye−xy) = (xexy, ye−xy) ◦ (iy, ix),

we have φs(x, y) = (iy, ix) and φu(x, y) = (xexy, ye−xy) = exp(X). Consider p ∈ N and a

germ of curve γ at (0, 0) such that φp(γ) = γ. Then Gγ = {ψ ∈ D̂iff (C2, 0) : ψ(γ) = γ} is

a pro-algebraic group containing φp. Since φp
s ◦ φp

u is the Jordan-Chevalley decomposition

of φp, we obtain φp
s, φ

p
u ∈ Gγ by Proposition 3.29. Remark 3.30 implies

〈φp
u〉

z
= 〈φu〉

z
= {exp(t log φu) : t ∈ C};

in particular φu ∈ Gγ and γ is an invariant curve of the formal vector field logφu. Since

log φu = X and X(xy) ≡ 0, we deduce that the axis are the unique curves that are

invariant by log φu. Therefore both axis are 2-periodic and no other curve is invariant or

even periodic by φ.

Let us show that the periods of periodic curves are uniformly bounded.

Proposition 3.47. Let φ ∈ D̂iff (Cn, 0). There exists p ∈ N such that φp(γ) = γ for any

formal periodic curve γ. Moreover every formal periodic curve is invariant if φ ∈ 〈φ〉z0.

Proof. Let p ∈ N such that φp ∈ 〈φ〉z0. Given a formal periodic curve γ consider the

pro-algebraic group Gγ = {η ∈ D̂iff (Cn, 0) : η(γ) = γ}. There exists q ∈ N such that

φpq ∈ Gγ . In particular we obtain 〈φpq〉z ⊂ Gγ . Since 〈φpq〉z = 〈φ〉z0 by Proposition 3.38,

we deduce φp ∈ Gγ .

4 Derived series

Solvable subgroups of Diff (Cn, 0) provide geometrical actions on a neighborhood of a point

by solvable groups. A natural question is how the dimension n restricts the complexity of

such actions. A simpler problem is studying wether or not the derived lengths of solvable

subgroups of Diff (Cn, 0) is bounded by a function of n and if that is the case then finding

the sharpest upper bound. Since a pro-algebraic group G of D̂iff (Cn, 0) and its pro-

algebraic closure G
(0)

have the same derived length by Lemma 3.36 and the properties of

G
(0)
0 can be understood in terms of its Lie algebra, it is natural to consider this problem

in the context of pro-algebraic groups.

We will see later on that the derived group of a pro-algebraic subgroup of D̂iff (Cn, 0)

is not necessarily pro-algebraic (section 5). We need to define the analogue of the derived

group in the context of pro-algebraic groups.
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Definition 4.1 ([13]). Let G be a subgroup of D̂iff (Cn, 0). By induction we define the

j-closed derived group G
(j)

of G as the closure in the Krull topology of [G
(j−1)

, G
(j−1)

] for

any j ∈ N.

Let us provide an alternate definition of the closed derived group. A pro-algebraic

subgroup G of D̂iff (Cn, 0) is a projective limit lim←−k∈NGk of algebraic groups and hence it

makes sense to consider the projective limit lim←−k∈NG
(1)
k of the derived groups. Such group

is indeed the closed derived group of G.

Proposition 4.2. Let G be a subgroup of D̂iff (Cn, 0). Then G
(j)

is a pro-algebraic group

for any j ∈ N∪ {0}. More precisely {ϕk : ϕ ∈ G
(j)} is the algebraic matrix group G

(j)
k for

all j ∈ N ∪ {0} and k ∈ N and we have G
(j)

= lim←−G
(j)
k for any j ∈ N ∪ {0}.

Proof. The derived group of a linear algebraic group is algebraic (cf. [3, 2.3, p. 58]). As

a consequence G
(j)
k is algebraic for all j ∈ N ∪ {0} and k ∈ N.

We define G̃(j) = {ϕ ∈ D̂iff (Cn, 0) : ϕk ∈ G
(j)
k for all k ∈ N}. Since πl,k(Gl) = Gk, we

obtain πl,k(G
(j)
l ) = G

(j)
k for all l ≥ k ≥ 1 and j ≥ 0. The group G̃(j) is pro-algebraic for

any j ≥ 0 by Lemma 3.23.

The remainder of the proof is devoted to show G
(j)

= G̃(j) for any j ≥ 0. It suffices to

prove the result for j = 1. The inclusion G
(1) ⊂ G̃(1) is clear.

Let ϕ ∈ G̃(1). Fix k ∈ N. Then ϕk is a product of commutators of elements of

Gk. Since lim←−j∈NGj → Gk is surjective by Corollary 3.25, we obtain that there exists

η(k) ∈ (G
z
)(1) such that (η(k))k = ϕk. Therefore ϕ is the limit in the Krull topology of

the sequence (η(k))k≥1. We are done since the Krull closure of (G
z
)(1) is equal to G

(1)
by

definition.

The next lemma provides the analogue of the derived series for pro-algebraic groups.

Lemma 4.3. Let G be a subgroup of D̂iff (Cn, 0). Then G
(j)

is the closure in the Krull

topology of the j-derived group of G
(0)

for any j ∈ N. Moreover, the series . . . � G
(m)

�

. . . � G
(1)

� G
(0)

is normal.

Proof. Since the derived series of a group is normal and G
(j)

= lim←−G
(j)
k by Proposition

4.2, the series . . . � G
(m)

� . . . � G
(1)

� G
(0)

is normal. Analogously as in Proposition 4.2

we can show that G
(j)

is contained in the closure of (G
z
)(j) in the Krull topology. Since

(G
z
)(j) ⊂ G

(j)
, we deduce that G

(j)
is the closure of (G

z
)(j) in the Krull topology.
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Remark 4.4. The previous results justify the definition of G
(j)

. On the one hand G
(j)

=

{Id} is equivalent to G(j) = {Id} by Lemmas 3.36 and 4.3. On the other hand the group

G
(j)

is more compatible with the pro-algebraic nature of G
z
than (G

z
)(j) by Proposition

4.2.

Let G be a pro-algebraic subgroup of D̂iff (Cn, 0). Suppose that G is connected, i.e.

G = G
z
0. We want to obtain the Lie algebras of the closed derived groups of G. In order

to complete this task we introduce some definitions for Lie algebras of formal vector fields.

Definition 4.5. The derived Lie algebra g(1) (or [g, g]) of a complex Lie algebra g is the

complex Lie algebra generated by the Lie brackets of elements of g. The derived series of

g is defined by setting g(0) := g and g(j) := [g(j−1), g(j−1)] for j > 0.

Let us introduce the closed derived series of a Lie algebra.

Definition 4.6 ([13]). Let g be a Lie subalgebra of X̂(Cn, 0). We denote by g(0) the

closure of g in the Krull topology. We define the j-closed derived Lie algebra g(j) of g as

the closure in the Krull topology of [g(j−1), g(j−1)] for any j ∈ N.

In next proposition we describe the closed derives series of a Lie algebra g of a pro-

algebraic group G in terms of the closed derived series of G. Moreover we interprete the

closed derived series of g as a “projective limit” of derived series.

Proposition 4.7. Let G be a subgroup of D̂iff (Cn, 0) such that G
z
= G

z
0. Let g be the Lie

algebra of G
z
. Then g(j) is the Lie algebra of G

(j)
and G

(j)
coincides with its connected

component of Id for any j ∈ N. Moreover we have g(j) = lim←−k∈N g
(j)
k for any j ∈ N ∪ {0},

where gk is the Lie algebra of Gk for any k ∈ N.

Proof. Since we work in characteristic 0 andGk is a connected algebraic group by definition

of G
z
0, we have that g

(j)
k is the Lie algebra of the connected algebraic group G

(j)
k for every

j ∈ N [3, Proposition 7.8, p. 108].

The Lie algebra

g̃(j) := {X ∈ X̂(Cn, 0) : Xk ∈ g
(j)
k for all k ∈ N}

is the Lie algebra of G
(j)

since

G
(j)

= {ϕ ∈ D̂iff (Cn, 0) : ϕk ∈ G
(j)
k for all k ∈ N}

by Proposition 4.2. It suffices to prove g(j) = g̃(j) for every j ∈ N ∪ {0}. The property

g(j) ⊂ g̃(j) is obvious for every j ∈ N ∪ {0}. Let us show the other inclusions.
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Definition 4.1 ([13]). Let G be a subgroup of D̂iff (Cn, 0). By induction we define the

j-closed derived group G
(j)

of G as the closure in the Krull topology of [G
(j−1)

, G
(j−1)

] for

any j ∈ N.

Let us provide an alternate definition of the closed derived group. A pro-algebraic

subgroup G of D̂iff (Cn, 0) is a projective limit lim←−k∈NGk of algebraic groups and hence it

makes sense to consider the projective limit lim←−k∈NG
(1)
k of the derived groups. Such group

is indeed the closed derived group of G.

Proposition 4.2. Let G be a subgroup of D̂iff (Cn, 0). Then G
(j)

is a pro-algebraic group

for any j ∈ N∪ {0}. More precisely {ϕk : ϕ ∈ G
(j)} is the algebraic matrix group G

(j)
k for

all j ∈ N ∪ {0} and k ∈ N and we have G
(j)

= lim←−G
(j)
k for any j ∈ N ∪ {0}.

Proof. The derived group of a linear algebraic group is algebraic (cf. [3, 2.3, p. 58]). As

a consequence G
(j)
k is algebraic for all j ∈ N ∪ {0} and k ∈ N.

We define G̃(j) = {ϕ ∈ D̂iff (Cn, 0) : ϕk ∈ G
(j)
k for all k ∈ N}. Since πl,k(Gl) = Gk, we

obtain πl,k(G
(j)
l ) = G

(j)
k for all l ≥ k ≥ 1 and j ≥ 0. The group G̃(j) is pro-algebraic for

any j ≥ 0 by Lemma 3.23.

The remainder of the proof is devoted to show G
(j)

= G̃(j) for any j ≥ 0. It suffices to

prove the result for j = 1. The inclusion G
(1) ⊂ G̃(1) is clear.

Let ϕ ∈ G̃(1). Fix k ∈ N. Then ϕk is a product of commutators of elements of

Gk. Since lim←−j∈NGj → Gk is surjective by Corollary 3.25, we obtain that there exists

η(k) ∈ (G
z
)(1) such that (η(k))k = ϕk. Therefore ϕ is the limit in the Krull topology of

the sequence (η(k))k≥1. We are done since the Krull closure of (G
z
)(1) is equal to G

(1)
by

definition.

The next lemma provides the analogue of the derived series for pro-algebraic groups.

Lemma 4.3. Let G be a subgroup of D̂iff (Cn, 0). Then G
(j)

is the closure in the Krull

topology of the j-derived group of G
(0)

for any j ∈ N. Moreover, the series . . . � G
(m)

�

. . . � G
(1)

� G
(0)

is normal.

Proof. Since the derived series of a group is normal and G
(j)

= lim←−G
(j)
k by Proposition

4.2, the series . . . � G
(m)

� . . . � G
(1)

� G
(0)

is normal. Analogously as in Proposition 4.2

we can show that G
(j)

is contained in the closure of (G
z
)(j) in the Krull topology. Since

(G
z
)(j) ⊂ G

(j)
, we deduce that G

(j)
is the closure of (G

z
)(j) in the Krull topology.

222 VIII Escuela Doctoral Intercontinental de Matemáticas PUCP - UVA
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Remark 4.4. The previous results justify the definition of G
(j)

. On the one hand G
(j)

=

{Id} is equivalent to G(j) = {Id} by Lemmas 3.36 and 4.3. On the other hand the group

G
(j)

is more compatible with the pro-algebraic nature of G
z
than (G

z
)(j) by Proposition

4.2.

Let G be a pro-algebraic subgroup of D̂iff (Cn, 0). Suppose that G is connected, i.e.

G = G
z
0. We want to obtain the Lie algebras of the closed derived groups of G. In order

to complete this task we introduce some definitions for Lie algebras of formal vector fields.

Definition 4.5. The derived Lie algebra g(1) (or [g, g]) of a complex Lie algebra g is the

complex Lie algebra generated by the Lie brackets of elements of g. The derived series of

g is defined by setting g(0) := g and g(j) := [g(j−1), g(j−1)] for j > 0.

Let us introduce the closed derived series of a Lie algebra.

Definition 4.6 ([13]). Let g be a Lie subalgebra of X̂(Cn, 0). We denote by g(0) the

closure of g in the Krull topology. We define the j-closed derived Lie algebra g(j) of g as

the closure in the Krull topology of [g(j−1), g(j−1)] for any j ∈ N.

In next proposition we describe the closed derives series of a Lie algebra g of a pro-

algebraic group G in terms of the closed derived series of G. Moreover we interprete the

closed derived series of g as a “projective limit” of derived series.

Proposition 4.7. Let G be a subgroup of D̂iff (Cn, 0) such that G
z
= G

z
0. Let g be the Lie

algebra of G
z
. Then g(j) is the Lie algebra of G

(j)
and G

(j)
coincides with its connected

component of Id for any j ∈ N. Moreover we have g(j) = lim←−k∈N g
(j)
k for any j ∈ N ∪ {0},

where gk is the Lie algebra of Gk for any k ∈ N.

Proof. Since we work in characteristic 0 andGk is a connected algebraic group by definition

of G
z
0, we have that g

(j)
k is the Lie algebra of the connected algebraic group G

(j)
k for every

j ∈ N [3, Proposition 7.8, p. 108].

The Lie algebra

g̃(j) := {X ∈ X̂(Cn, 0) : Xk ∈ g
(j)
k for all k ∈ N}

is the Lie algebra of G
(j)

since

G
(j)

= {ϕ ∈ D̂iff (Cn, 0) : ϕk ∈ G
(j)
k for all k ∈ N}

by Proposition 4.2. It suffices to prove g(j) = g̃(j) for every j ∈ N ∪ {0}. The property

g(j) ⊂ g̃(j) is obvious for every j ∈ N ∪ {0}. Let us show the other inclusions.
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Consider the homomorphism (dπk+1,k)Id : gk+1 → gk defined in the proof of Proposi-

tion 3.41. Since (dπk+1,k)Id(gk+1) = gk for every k ∈ N, the natural projection lim←− gl → gk

is surjective for any k ∈ N. Analogously as in the proof of Proposition 4.2 given any

X ∈ g̃(j) and k ∈ N there exists X(k) ∈ g(j) such that X(k)k = Xk. Hence X is the limit

of the sequence (X(k))k∈N and by definition X belongs to g(j). We obtain g̃(j) ⊂ g(j) and

then g̃(j) = g(j) for any j ≥ 0.

Given a connected Lie group G with Lie algebra g, the Lie algebra of G(1) is the derived

Lie algebra g(1). Proposition 4.7 is an analogue of such result adapted to the context of

connected pro-algebraic groups.

The next lemma is the analogue of Lemma 4.3 for Lie algebras.

Lemma 4.8. Let G be a solvable subgroup of D̂iff (Cn, 0). Let g be the Lie algebra of G
z
.

Then g(j) is the closure in the Krull topology of g(j) for any j ∈ N. Moreover we have

ϕ∗g
(j) = g(j) for all ϕ ∈ G

z
and j ∈ N. The series

. . . � g(m) � . . . � g(1) � g(0) = g

is normal.

Proof. Since lim←− gl → gj is surjective for any j ∈ N, g(j) is contained in the closure in

the Krull topology of g(j) for any j ∈ N. Since g(j) ⊂ g(j) and g(j) is closed in the Krull

topology, we deduce that g(j) is the closure of g(j) in the Krull topology for any j ≥ 0.

The property ϕ∗g = g for any ϕ ∈ G
z
is a consequence of g being the Lie algebra

of G
z
. Since the Lie subalgebras of the derived series of g are characteristic, we obtain

ϕ∗g
(j) = g(j) for all ϕ ∈ G

z
and j ≥ 0. We get ϕ∗g

(j) = g(j) for all ϕ ∈ G
z
and j ≥ 0 by

taking the Krull closures.

Since g(j) = lim←−k∈N g
(j)
k for any j ≥ 0 and the derived series are normal, the series

. . . � g(m) � . . . � g(1) � g(0) = g

is normal.

The next proposition establishes that the derived length of a connected subgroup of

D̂iff (Cn, 0) and its Lie algebra coincide.

Proposition 4.9. Let G be a solvable subgroup of D̂iff (Cn, 0) such that G
z
= G

z
0. Then

the derived lengths of G and g coincide.
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Proof. Fix j ≥ 0. We have G(j) = {Id} if and only if (G
(0)

)(j) by Lemma 3.36. Since the

closure of (G
(0)

)(j) in the Krull topology is equal to G
(j)

by Lemma 4.3, we obtain G(j) =

{Id} if and only if G
(j)

= {Id}. The Lie algebra of G
(j)

is equal to g(j) by Proposition 4.7;

moreover exp(g(j)) generates G
(j)

since this group coincides with is connected component

of Id (Proposition 4.7) and Proposition 3.41. Clearly G
(j)

= {Id} if and only if g(j) = 0.

Moreover g(j) = 0 if and only if g(j) = 0 since g(j) = 0 is the closure in the Krull topology

of g(j) by Lemma 4.8. We deduce G(j) = {Id} if and only g(j) = 0 for any j ≥ 0.

This text is intended to be elementary and we will not provide the details of the calcu-

lations of sharp upper bounds of the derived length of solvable subgroups of Diff (Cn, 0).

Anyway the previous ideas can be used to show the following results.

Theorem 4.10 ([13]). Let G be a solvable subgroup of D̂iff (Cn, 0) such that G
z
0 = G

z
.

Then �(G) ≤ 2n. Moreover there exists a subgroup H of Diff (Cn, 0) such that H
z
0 = H

z

and �(H) = 2n.

Theorem 4.11 ([13]). Let G be a unipotent solvable subgroup of D̂iff (Cn, 0). Then we

have �(G) ≤ 2n − 1. Moreover there exists a unipotent subgroup H of Diff (Cn, 0) such

that �(H) = 2n− 1.

The next theorem is classical. As a generalization we can calculate sharpest upper

bounds of the derived length of solvable subgroups of D̂iff (Cn, 0) for n ≤ 5.

Theorem 4.12 (cf. [11], [9, Theorem 6.10, p. 85]). Let G be a solvable subgroup of

D̂iff (C, 0). Then �(G) ≤ 2. Moreover there exists a subgroup H of Diff (C, 0) such that

�(H) = 2.

Theorem 4.13 ([21]). Fix 2 ≤ n ≤ 5. Let G be a solvable subgroup of D̂iff (Cn, 0) . Then

�(G) ≤ 2n+1. Moreover there exists a subgroup H of Diff (Cn, 0) such that �(H) = 2n+1.

5 Pro-algebraic groups in dimension 1

The theory of pro-algebraic groups is powerful but so far we exhibited just a few examples

of pro-algebraic groups. The situation is very simple in dimension 1 where pro-algebraic

groups can be characterized. We classify all pro-algebraic subgroups of D̂iff (C, 0) in this

section.
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Consider the homomorphism (dπk+1,k)Id : gk+1 → gk defined in the proof of Proposi-

tion 3.41. Since (dπk+1,k)Id(gk+1) = gk for every k ∈ N, the natural projection lim←− gl → gk

is surjective for any k ∈ N. Analogously as in the proof of Proposition 4.2 given any

X ∈ g̃(j) and k ∈ N there exists X(k) ∈ g(j) such that X(k)k = Xk. Hence X is the limit

of the sequence (X(k))k∈N and by definition X belongs to g(j). We obtain g̃(j) ⊂ g(j) and

then g̃(j) = g(j) for any j ≥ 0.

Given a connected Lie group G with Lie algebra g, the Lie algebra of G(1) is the derived

Lie algebra g(1). Proposition 4.7 is an analogue of such result adapted to the context of

connected pro-algebraic groups.

The next lemma is the analogue of Lemma 4.3 for Lie algebras.

Lemma 4.8. Let G be a solvable subgroup of D̂iff (Cn, 0). Let g be the Lie algebra of G
z
.

Then g(j) is the closure in the Krull topology of g(j) for any j ∈ N. Moreover we have
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(j) = g(j) for all ϕ ∈ G
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and j ∈ N. The series
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Proof. Since lim←− gl → gj is surjective for any j ∈ N, g(j) is contained in the closure in

the Krull topology of g(j) for any j ∈ N. Since g(j) ⊂ g(j) and g(j) is closed in the Krull

topology, we deduce that g(j) is the closure of g(j) in the Krull topology for any j ≥ 0.

The property ϕ∗g = g for any ϕ ∈ G
z
is a consequence of g being the Lie algebra

of G
z
. Since the Lie subalgebras of the derived series of g are characteristic, we obtain

ϕ∗g
(j) = g(j) for all ϕ ∈ G

z
and j ≥ 0. We get ϕ∗g

(j) = g(j) for all ϕ ∈ G
z
and j ≥ 0 by

taking the Krull closures.

Since g(j) = lim←−k∈N g
(j)
k for any j ≥ 0 and the derived series are normal, the series

. . . � g(m) � . . . � g(1) � g(0) = g

is normal.

The next proposition establishes that the derived length of a connected subgroup of

D̂iff (Cn, 0) and its Lie algebra coincide.

Proposition 4.9. Let G be a solvable subgroup of D̂iff (Cn, 0) such that G
z
= G

z
0. Then

the derived lengths of G and g coincide.
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Proof. Fix j ≥ 0. We have G(j) = {Id} if and only if (G
(0)

)(j) by Lemma 3.36. Since the

closure of (G
(0)

)(j) in the Krull topology is equal to G
(j)

by Lemma 4.3, we obtain G(j) =

{Id} if and only if G
(j)

= {Id}. The Lie algebra of G
(j)

is equal to g(j) by Proposition 4.7;

moreover exp(g(j)) generates G
(j)

since this group coincides with is connected component

of Id (Proposition 4.7) and Proposition 3.41. Clearly G
(j)

= {Id} if and only if g(j) = 0.

Moreover g(j) = 0 if and only if g(j) = 0 since g(j) = 0 is the closure in the Krull topology

of g(j) by Lemma 4.8. We deduce G(j) = {Id} if and only g(j) = 0 for any j ≥ 0.

This text is intended to be elementary and we will not provide the details of the calcu-
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z
0 = G

z
.

Then �(G) ≤ 2n. Moreover there exists a subgroup H of Diff (Cn, 0) such that H
z
0 = H

z

and �(H) = 2n.
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We denote by Td the centralizer of µz in D̂iff (C, 0) where µ is a primitive d-root of

the unit. An element φ of Td is of the form

φ(z) = λz +

∞∑
k=1

λkz
kd+1

where λ ∈ C∗ and λk ∈ C for any k ≥ 2.

Definition 5.1. Consider a formal vector field X =
∑∞

j=p aj+1z
j+1 ∂

∂z ∈ X̂(C, 0) such that

ap+1 �= 0. We define ord(X) = p.

Remark 5.2. Given X,Y ∈ X̂(C, 0) we have

ord[X,Y ] = ord(X) + ord(Y )

if ord(X) �= ord(Y ).

Theorem 5.3. Let G be a pro-algebraic subgroup of D̂iff (C, 0). Then up to a formal

conjugacy G is of one of the forms:

• G = {λz : λ ∈ H} where H is an algebraic subgroup of C∗.

• G =
{
(λkz) ◦ exp

(
t zp+1

1+λzp
∂
∂z

)
: k ∈ Z, t ∈ C

}
where p ≥ 1, λp = 1 and λ ∈ C.

• G =
{
(λz) ◦ exp

(
tzp+1 ∂

∂z

)
: λ ∈ H, t ∈ C

}
where p ≥ 1 and H is an algebraic sub-

group of C∗.

• G ⊂ Td for some d ≥ 1, there exists k0 ≥ 0 such that {φk0d : φ ∈ G} is algebraic and

G = {φ ∈ Td : φk0d ∈ Gk0d}.

The three first possibilities correspond to solvable pro-algebraic groups. Notice that in

the last possibility the subgroup {φ ∈ Td : jk0dφ ≡ Id} is contained in G. If d = 1 then G

contains all the elements of D̂iff (C, 0) whose order of contact with the identity is higher

than k0.

Proof. Since G is pro-algebraic, the group j1G is algebraic and then either a finite cyclic

group or equal to {λz : λ ∈ C∗}. Suppose that G is solvable. The classification of solvable

subgroups of D̂iff (C, 0) (cf. [11], [9, section 6B3, p. 89]) implies that G is of one of the

forms describe in the first three items.

Suppose G is non-solvable. The set Gu is a pro-algebraic group since it is the inter-

section of the pro-algebraic groups G and D̂iff 1(C, 0) (Remark 3.27). The Lie algebra gN
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of Gu consists of formal vector fields with vanishing linear part and is closed in the Krull

topology by Corollary 3.43. We denote K(G) = {ord(X) : X ∈ gN} and d = gcd(K(G)).

The formal centralizer of G is a cyclic group of cardinal d by a theorem of Loray [12].

Up to a formal change of coordinates we can suppose that the centralizer of G is equal to

〈e2πi/dz〉 and then G ⊂ Td. The set K(G) satisfies k1 + k2 ∈ K(G) for all k1, k2 ∈ K(G)

such that k1 �= k2 by Remark 5.2. Hence it is simple to see that K(G) contains all the

natural numbers of the form kd for some k0 ∈ N and any k ≥ k0. Since gN is closed in

the Krull topology, it contains all formal vector fields of the form zk0d+1g̃(zd) ∂
∂z . Thus G

contains all formal diffeomorphisms of the form z+zk0d+1g̃(zd). The group {φk0d : φ ∈ G}
is algebraic by Proposition 3.26. The inclusion G ⊂ {φ ∈ Td : φk0d ∈ Gk0d} is clear. Let

us show the reverse inclusion. Given an element φ ∈ Td such that φk0d ∈ Gk0d there exists

η ∈ G such that ηk0d = φk0d since G is pro-algebraic. The formal diffeomorphism η−1 ◦ φ
is of the form z + zk0d+1g̃(zd) and hence it belongs to G. Since η belongs to G, φ belongs

to G.

The pro-algebraic solvable subgroups of D̂iff (C, 0) have the finite determination prop-

erty and their dimension is 0, 1 or 2. On the other hand up to ramification a non-solvable

pro-algebraic subgroup of D̂iff (C, 0) has finite codimension. More precisely G has finite

codimension in Td for some d ∈ N.

The derived group of a pro-algebraic subgroup of D̂iff (Cn, 0)

is not necessarily pro-algebraic

We justified that the closed derived series of a pro-algebraic group is the right concept

instead of the derived series in section 4. But a priori these series could be the same,

making the introduction of the closed derived series redundant. We show in this section

that in general the series are different.

The closed derived series and the derived series coincide for any pro-algebraic group if

and only if the derived group of a pro-algebraic group is always pro-algebraic. We exhibit

in this section an example of a pro-algebraic subgroup G of D̂iff (C3, 0) whose derived

group is not pro-algebraic.

Consider

X = x
∂

∂y
, Y = y

∂

∂z
and Z = x

∂

∂z
.

We have [X,Y ] = Z, [X,Z] = 0 and [Y, Z] = 0.
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of Gu consists of formal vector fields with vanishing linear part and is closed in the Krull

topology by Corollary 3.43. We denote K(G) = {ord(X) : X ∈ gN} and d = gcd(K(G)).
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Up to a formal change of coordinates we can suppose that the centralizer of G is equal to

〈e2πi/dz〉 and then G ⊂ Td. The set K(G) satisfies k1 + k2 ∈ K(G) for all k1, k2 ∈ K(G)

such that k1 �= k2 by Remark 5.2. Hence it is simple to see that K(G) contains all the

natural numbers of the form kd for some k0 ∈ N and any k ≥ k0. Since gN is closed in
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is of the form z + zk0d+1g̃(zd) and hence it belongs to G. Since η belongs to G, φ belongs
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The pro-algebraic solvable subgroups of D̂iff (C, 0) have the finite determination prop-

erty and their dimension is 0, 1 or 2. On the other hand up to ramification a non-solvable

pro-algebraic subgroup of D̂iff (C, 0) has finite codimension. More precisely G has finite

codimension in Td for some d ∈ N.

The derived group of a pro-algebraic subgroup of D̂iff (Cn, 0)

is not necessarily pro-algebraic

We justified that the closed derived series of a pro-algebraic group is the right concept

instead of the derived series in section 4. But a priori these series could be the same,

making the introduction of the closed derived series redundant. We show in this section

that in general the series are different.

The closed derived series and the derived series coincide for any pro-algebraic group if

and only if the derived group of a pro-algebraic group is always pro-algebraic. We exhibit

in this section an example of a pro-algebraic subgroup G of D̂iff (C3, 0) whose derived

group is not pro-algebraic.

Consider
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∂
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∂

∂z
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∂

∂z
.
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Let us consider sequences (Xn)n≥1 and (Yn)n≥1 of vector fields defined in a neighbor-

hood of 0 in C3 such that Xj = PjX, Yj = QjY where Pj , Qj ∈ C{x} for any j ∈ N.
Moreover we suppose that the multiplicity of Pj and Qj at 0 tend to ∞ when j → ∞. We

also want to guarantee the independence condition

∑
1≤j,k

λj,kPjQk = 0 =⇒ λj,k = 0 for all j, k ≥ 0 (9)

where the left hand side is a linear combination with complex coefficients. The expression∑
1≤j,k λj,kPjQk makes sense since PjQk tends to 0 in the Krull topology when j+k → ∞.

Lemma 5.4. There exists a choice of homogeneous polynomials (Pj)j≥1 and (Qj)j≥1 such

that limj→∞ Pj = 0 = limj→∞Qj in the Krull topology and deg(PjQk) �= deg(Pj′Qk′) if

(j, k) �= (j′, k′). In particular the independence condition (9) holds.

Proof. We define P1 = x and Q1 = x. Let us define Pj = xaj and Qj = xbj for cer-

tain sequences (aj)j≥1 and (bj)j≥1 of natural numbers. Suppose that we already defined

P1, Q1, . . . , Pj , Qj for j ≥ 1. We define

aj+1 = max
1≤k,l≤j

deg(PkQl) and then bj+1 = max
1≤k≤j+1, 1≤l≤j

deg(PkQl).

Notice that (aj)j≥1 and (bj)j≥1 are strictly increasing.

We claim that deg(PjQk) �= deg(Pj′Qk′) if (j, k) �= (j′, k′). We define

cj,k = (max{2j − 1, 2k},min{2j − 1, 2k}) for j, k ∈ N.

Notice that (j, k) �= (j′, k′) implies cj,k �= cj′,k′ . Moreover if cj,k < cj′,k′ in the lexico-

graphical order then we obtain deg(PjQk) < deg(Pj′Qk′) by our choice of (aj)j≥1 and

(bj)j≥1.

The equation
∑

1≤j,k λj,kPjQk = 0 implies λj,k = 0 for all j, k ≥ 1 since all monomials

PjQk with j, k ≥ 1 have different degrees.

Definition 5.5. We denote limk
n→∞Wn = W if the sequence (Wn)n≥1 converges to W in

the Krull topology.

Consider the sets g, h ⊂ X̂N (C3, 0) defined by

g = {X ∈ X̂N (C3, 0) of the form
∞∑
j=1

λjXj +
∞∑
k=1

µkYk +
∑
m,l≥1

γm,l[Xm, Yl]}
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and

h = {X ∈ X̂N (C3, 0) : X is of the form
∑
m,l≥1

γm,l[Xm, Yl]}

where λj , µk and γm,l are complex numbers.

Lemma 5.6. g is a step-2 nilpotent complex Lie algebra. Moreover h is an ideal of g

contained in the center of g such that g(1) ⊂ h and h is the closure of g(1) in the Krull

topology.

Proof. Let W1,W2 ∈ g. We have

Wn =
∞∑
j=1

λj,nXj +
∞∑
k=1

µk,nYk +
∑
m,l≥1

γm,l,n[Xm, Yl]

for n ∈ {1, 2}. The vector field

[W1,W2] =
∑
j,k≥1

(λj,1µk,2 − λj,2µk,1)[Xj , Yk]

belongs to g. The previous formula implies [W3, [W1,W2]] = 0 for all W1,W2,W3 ∈ g, the

inclusion of h in the center of g and g(1) ⊂ h. The Lie algebra g is step-2 nilpotent since

g(1) is contained in the center of g.

Let us prove that h is closed in the Krull topology. It suffices to show that given a

sequence

Wn =
∑
m,l≥1

γm,l,nPm(x)Ql(x)x
∂

∂z

in g such that limk
n→∞Wn = W then the W belongs to h. Since the degrees of the

monomials Pm(x)Ql(x) are pairwise different, there exists a unique sequence (γm,l)m,l≥1

such that
∑

m,l≥1 γm,l,nPm(x)Ql(x)x converges to
∑

m,l≥1 γm,lPm(x)Ql(x)x in the Krull

topology when n → ∞. The vector field W =
∑

m,l≥1 γm,lPm(x)Ql(x)x∂/∂z belongs to h.

Notice that [Xm, Yl] belongs to g
(1) for allm, l ≥ 1. Given an element

∑
m,l≥1 γm,l[Xm, Yl]

of h the elements
∑

m+l≤k γm,l[Xm, Yl] belong to g(1) and converge to
∑

γm,l[Xm, Yl] when

k → ∞. We deduce that h is contained in the closure of g(1) in the Krull topology. Since

g(1) ⊂ h and h is closed, h is the closure of g(1).

Lemma 5.7. The complex Lie algebra g is closed in the Krull topology.

Proof. It suffices to show that given a sequence

Wn =
∞∑
j=1

λj,nPj(x)x
∂

∂y
+

∞∑
k=1

µk,nQk(x)y
∂

∂z
+

∑
m,l≥1

γm,l,nPm(x)Ql(x)x
∂

∂z
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Notice that [Xm, Yl] belongs to g
(1) for allm, l ≥ 1. Given an element
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of h the elements
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Lemma 5.7. The complex Lie algebra g is closed in the Krull topology.

Proof. It suffices to show that given a sequence

Wn =
∞∑
j=1

λj,nPj(x)x
∂

∂y
+

∞∑
k=1

µk,nQk(x)y
∂

∂z
+

∑
m,l≥1

γm,l,nPm(x)Ql(x)x
∂

∂z
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in g such that limk
n→∞Wn = W then W belongs to g. Since limk

n→∞Wn(y) = W (y)

and (deg(Pj))j≥1 is strictly increasing, there exists a unique sequence (λj)j≥1 such that

limk
n→∞

∑∞
j=1 λj,nPj(x) =

∑∞
j=1 λjPj(x). We obtain W (y) =

∑∞
j=1 λjPj(x)x. Analo-

gously, by noticing limk
n→∞

∂Wn(z)
∂y = ∂W (z)

∂y , we deduce the existence of a unique sequence

(µk)k≥1 such that
k
lim
n→∞

∞∑
k=1

µk,nQk(x)y
∂

∂z
=

∞∑
k=1

µkQk(x)y
∂

∂z
.

The previous discussion implies that the series
∑

m,l≥1 γm,l,nPm(x)Ql(x)x converges in

the Krull topology when n → ∞. Since h is closed in the Krull topology by Lemma 5.6,

there exists a unique sequence (γm,l)m,l≥1 such that
∑

m,l≥1 γm,l,nPm(x)Ql(x)x converges

to
∑

m,l≥1 γm,lPm(x)Ql(x)x in the Krull topology when n → ∞. The vector field

W =
∞∑
j=1

λjPj(x)x
∂

∂y
+

∞∑
k=1

µkQk(x)y
∂

∂z
+

∑
m,l≥1

γm,lPm(x)Ql(x)x
∂

∂z

belongs to g.

Proposition 5.8. The set G := exp(g) is a pro-algebraic unipotent subgroup of D̂iff (C3, 0)

consisting of tangent to the identity elements.

Proof. Every element of g has order of contact at least 2 with 0 and then every element

of G is tangent to the identity.

Since the Lie algebra g is step-2 nilpotent, it can be proved that G is a group by

Baker-Campbell-Hausdorff formula. It is very easy to calculate exp(W ) for W ∈ g since

W (x) = 0, W 2(y) = 0 and W 3(z) = 0. It can be checked out that G is given by algebraic

equations in every space of jets and hence {φk : φ ∈ G} is an algebraic group for any

k ∈ N. Moreover since g is closed in the Krull topology by Lemma 5.7, G is closed in the

Krull topology. As a consequence G is pro-algebraic by Proposition 3.26.

Our goal is proving that G(1) is not a pro-algebraic group. In order to accomplish such

a task let us describe log(G(1))).

Proposition 5.9. The set log(G(1)) is equal to the Lie algebra g(1). Moreover g(1) coin-

cides with the set of formal vector fields of the form

log φ =
s∑

r=1

[
∞∑
j=1

λj,rXj ,
∞∑
k=1

µk,rYk] (10)

where s ≥ 0 and λj,r, µk,r ∈ C for all j, k ≥ 1 and 1 ≤ r ≤ s.
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Proof. Consider elements

φr = exp




∞∑
j=1

λj,rXj +
∞∑
k=1

µk,rYk +
∑
m,l≥1

γm,l,r[Xm, Yl]




of G for r ∈ {1, 2}. Since g(1) is contained in the center of g we obtain

log[φ1, φ2] = [

∞∑
j=1

λj,1Xj ,

∞∑
k=1

µk,2Yk]− [

∞∑
j=1

λj,2Xj ,

∞∑
k=1

µk,1Yk]. (11)

Then every commutator of elements of G is of the form (10). Since g(1) is contained in

the center of g, we obtain

log([φ1, ψ1] ◦ . . . ◦ [φs, ψs]) =

s∑
r=1

log([φr, ψr]) (12)

for all φ1, ψ1, . . . , φs, ψs ∈ G. In particular every element of log(G(1)) is of the form (10).

Every element φ of the form (10) with s = 1 can be obtained by considering λj,2 = 0

for all j ≥ 1 in Equation (11). We get a general element of the form (10) by applying

Equation (12).

The next step is showing that g(1) is not closed in the Krull topology.

Proposition 5.10. The element
∑∞

l=1[Xl, Yl] belongs to the closure of g(1) in the Krull

topology but it does not belong to g(1).

Proof. Suppose that we have

∞∑
l=1

[Xl, Yl] =

s∑
r=1

[

∞∑
j=1

λj,rXj ,

∞∑
k=1

µk,rYk]. (13)

We denote Ar =
∑∞

j=1 λj,rXj and Br =
∑∞

k=1 µk,rYk.

We can suppose up to multiply Ar and Br by complex numbers that λ1,r ∈ {0, 1} for

any 1 ≤ r ≤ s. The independence condition (9) implies [X1,
∑

λ1,r=1Br] = [X1, Y1] and

then
∑

λ1,r=1Br = Y1. Consider 1 ≤ r0 ≤ s such that λ1,r0 = 1. By replacing Br0 with

Y1 −
∑

λ1,r=1, r �=r0
Br in Equation (13) we obtain

∞∑
l=2

[Xl, Yl] =
∑

λ1,r=1, r �=r0

[Ar −Ar0 , Br] + [Ar0 −X1, Y1] +
∑

λ1,r=0

[Ar, Br].
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in g such that limk
n→∞Wn = W then W belongs to g. Since limk

n→∞Wn(y) = W (y)

and (deg(Pj))j≥1 is strictly increasing, there exists a unique sequence (λj)j≥1 such that

limk
n→∞

∑∞
j=1 λj,nPj(x) =

∑∞
j=1 λjPj(x). We obtain W (y) =

∑∞
j=1 λjPj(x)x. Analo-

gously, by noticing limk
n→∞

∂Wn(z)
∂y = ∂W (z)

∂y , we deduce the existence of a unique sequence

(µk)k≥1 such that
k
lim
n→∞

∞∑
k=1

µk,nQk(x)y
∂

∂z
=

∞∑
k=1

µkQk(x)y
∂

∂z
.

The previous discussion implies that the series
∑

m,l≥1 γm,l,nPm(x)Ql(x)x converges in

the Krull topology when n → ∞. Since h is closed in the Krull topology by Lemma 5.6,

there exists a unique sequence (γm,l)m,l≥1 such that
∑

m,l≥1 γm,l,nPm(x)Ql(x)x converges

to
∑

m,l≥1 γm,lPm(x)Ql(x)x in the Krull topology when n → ∞. The vector field

W =
∞∑
j=1
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∂

∂y
+

∞∑
k=1

µkQk(x)y
∂

∂z
+

∑
m,l≥1

γm,lPm(x)Ql(x)x
∂

∂z

belongs to g.

Proposition 5.8. The set G := exp(g) is a pro-algebraic unipotent subgroup of D̂iff (C3, 0)

consisting of tangent to the identity elements.

Proof. Every element of g has order of contact at least 2 with 0 and then every element

of G is tangent to the identity.

Since the Lie algebra g is step-2 nilpotent, it can be proved that G is a group by

Baker-Campbell-Hausdorff formula. It is very easy to calculate exp(W ) for W ∈ g since

W (x) = 0, W 2(y) = 0 and W 3(z) = 0. It can be checked out that G is given by algebraic

equations in every space of jets and hence {φk : φ ∈ G} is an algebraic group for any

k ∈ N. Moreover since g is closed in the Krull topology by Lemma 5.7, G is closed in the

Krull topology. As a consequence G is pro-algebraic by Proposition 3.26.

Our goal is proving that G(1) is not a pro-algebraic group. In order to accomplish such

a task let us describe log(G(1))).

Proposition 5.9. The set log(G(1)) is equal to the Lie algebra g(1). Moreover g(1) coin-

cides with the set of formal vector fields of the form

log φ =
s∑

r=1

[
∞∑
j=1

λj,rXj ,
∞∑
k=1

µk,rYk] (10)

where s ≥ 0 and λj,r, µk,r ∈ C for all j, k ≥ 1 and 1 ≤ r ≤ s.
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k=1

µk,rYk +
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m,l≥1

γm,l,r[Xm, Yl]




of G for r ∈ {1, 2}. Since g(1) is contained in the center of g we obtain

log[φ1, φ2] = [

∞∑
j=1

λj,1Xj ,

∞∑
k=1

µk,2Yk]− [

∞∑
j=1

λj,2Xj ,

∞∑
k=1

µk,1Yk]. (11)

Then every commutator of elements of G is of the form (10). Since g(1) is contained in

the center of g, we obtain

log([φ1, ψ1] ◦ . . . ◦ [φs, ψs]) =

s∑
r=1

log([φr, ψr]) (12)

for all φ1, ψ1, . . . , φs, ψs ∈ G. In particular every element of log(G(1)) is of the form (10).

Every element φ of the form (10) with s = 1 can be obtained by considering λj,2 = 0

for all j ≥ 1 in Equation (11). We get a general element of the form (10) by applying

Equation (12).

The next step is showing that g(1) is not closed in the Krull topology.

Proposition 5.10. The element
∑∞

l=1[Xl, Yl] belongs to the closure of g(1) in the Krull

topology but it does not belong to g(1).

Proof. Suppose that we have

∞∑
l=1

[Xl, Yl] =

s∑
r=1

[

∞∑
j=1

λj,rXj ,

∞∑
k=1

µk,rYk]. (13)

We denote Ar =
∑∞

j=1 λj,rXj and Br =
∑∞

k=1 µk,rYk.

We can suppose up to multiply Ar and Br by complex numbers that λ1,r ∈ {0, 1} for

any 1 ≤ r ≤ s. The independence condition (9) implies [X1,
∑

λ1,r=1Br] = [X1, Y1] and

then
∑

λ1,r=1Br = Y1. Consider 1 ≤ r0 ≤ s such that λ1,r0 = 1. By replacing Br0 with

Y1 −
∑

λ1,r=1, r �=r0
Br in Equation (13) we obtain

∞∑
l=2

[Xl, Yl] =
∑

λ1,r=1, r �=r0

[Ar −Ar0 , Br] + [Ar0 −X1, Y1] +
∑

λ1,r=0

[Ar, Br].
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Hence
∑∞

l=2[Xl, Yl] is of the form

∞∑
l=2

[Xl, Yl] = [C1, Y1] +

s∑
r=2

[Cr, Dr]

where Cr =
∑∞

j=2 λ
′
j,rXj and Dr =

∑∞
k=1 µ

′
k,rYk for all 1 ≤ r ≤ s. We define D1 = Y1. We

can suppose µ′
1,r ∈ {0, 1} for any 2 ≤ r ≤ s. We get

∑
µ′
1,r=1Cr = 0 by the independence

condition. We obtain

∞∑
l=2

[Xl, Yl] =
∑

µ′
1,r=1, r≥2

[Cr, Dr − Y1] +
∑

µ′
1,r=0

[Cr, Dr]. (14)

All the coefficients of X1 in Cr vanish for 1 ≤ r ≤ s. Moreover the coefficient of Y1 in

Dr − Y1 is 0 if µ′
1,r = 1 and r ≥ 2 whereas the coefficient of Y1 in Dr vanishes if µ′

1,r = 0.

The right hand side of Equation (14) has s − 1 terms whereas the right hand side of

Equation (13) had s terms. By repeating this process a finite number of times we deduce

that there exists l0 ∈ N such that
∑∞

l=l0
[Xl, Yl] = 0. This contradicts the independence

condition. In particular we deduce that
∑∞

l=1[Xl, Yl] is not of the form (13) and hence it

does not belong to g(1).

On the other hand it is clear that
∑j

l=1[Xl, Yl] belongs to g(1) for any j ≥ 1. Since∑∞
l=1[Xl, Yl] = limk

j→∞
∑j

l=1[Xl, Yl], the vector field
∑∞

l=1[Xl, Yl] belongs to the closure of

g(1) in the Krull topology.

Proposition 5.11. The group G(1) is not pro-algebraic.

Proof. It suffices to show that G(1) is not closed in the Krull topology. We are done since

G(1) = exp(g(1)) and g(1) is not closed in the Krull topology by Proposition 5.10.
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l=2[Xl, Yl] is of the form
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l=2

[Xl, Yl] = [C1, Y1] +

s∑
r=2

[Cr, Dr]

where Cr =
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j=2 λ
′
j,rXj and Dr =

∑∞
k=1 µ

′
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G(1) = exp(g(1)) and g(1) is not closed in the Krull topology by Proposition 5.10.
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Pineda Escobar, Jesús David Universidad Nacional de Colombia

Pocoy Yauri, Vı́ctor Alberto Universidad Nacional Santiago Antúnez de Mayolo
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