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Abstract

Using a Stochastic Volatility in Mean (SVM) model, we perform an empirical study of five Latin
American indexes in order to see the impact of the volatility in the mean of the returns. We
use MCMC Hamiltonian dynamics. The results indicate that volatility has a negative impact
on returns suggesting that the volatility feedback effect is stronger than the effect related to the
expected volatility. This result is clear and opposite to the finding of Koopman and Uspensky
(2002). The other countries present negative values but the upper tail of the intervals are near to
the zero value.

JEL Codes: C11, C15, C22, C51, C52, C58, G12.
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Hamiltonian Monte Carlo, Markov Chain Monte Carlo, Riemannian Manifold Hamiltonian Monte
Carlo, Non Linear State Space Models.

Resumen

Utilizando un modelo de volatilidad estocástica en la media (SVM) junto con la dinámica Hamil-
toniana MCMC, realizamos un estudio empírico de cinco índices latinoamericanos para analizar el
impacto de la volatilidad en la media de los rendimientos. Los resultados indican que la volatilidad
tiene un impacto negativo en los rendimientos, lo que sugiere que el efecto de retroalimentación de
la volatilidad es más fuerte que el efecto relacionado con la volatilidad esperada. Este resultado
es claro y opuesto al hallazgo de Koopman y Uspensky (2002). Los otros países presentan valores
negativos, pero la cola superior de los intervalos está cerca del valor cero.
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1 Introduction

In recent years, stochastic volatility (SV) models have been considered as a useful tool for modeling

time-varying variances, mainly in financial applications where policymakers or stockholders are con-

stantly facing decision problems that usually depend on measures of volatility and risk1 An attractive

feature of the SV model is its close relationship to financial economic theories (Melino and Turnbull,

1990) and its ability to capture the main empirical properties often observed in daily series of financial

returns in a more appropriate way (Carnero et al., 2004).

The daily asymmetrical relation between equity market returns and volatility has received unprece-

dented attention in the financial literature (Black, 1976; Campbell and Entchel, 2000; Bekaert and Wu,

2000). Asymmetric equity market volatility is important for al least three reasons. First, it is an

important characteristic of the market volatility dynamics, has asset pricing implications and is a

characteristic of priced risk factors. Second, it plays an important role in risk prediction, hedging

and option pricing. Finally, asymmetric volatility implies negatively skewed returns distributions, i.e.

it may help to explain some of the probability market value losses. The relation between expected

returns and expected volatility have been extensively examined in recent years. Overall, there appears

to be stronger evidence of a negative relationship between unexpected returns and innovations to the

volatility process, which French et al. (1987) interpreted as indirect evidence of a positive correlation

between the expected risk premium and ex ante volatility. If expected volatility and expected returns

are positively related and future cash flows are unaffected, the current stock index price should fall.

Conversely, small shocks to the return process lead to an increase in contemporaneous stock index

prices. This theory, known as the volatility feedback theory hinges on two assumptions: first, the

existence of a positive relation between the expected components of the return and volatility process

and second, volatility persistence. An alternative explanation for asymmetric volatility where causal-

ity runs in the opposite direction is the leverage effect put forward by Black (1976), who asserted that

a negative (positive) return shock leads to an increase (decrease) in the firm’s financial leverage ratio,

which has an upward (downward) effect on the volatility of its stock returns. However, French et al.

1The other important branch of related models is GARCH models where time-varying variance is modeled as a

deterministic function of past squared perturbations and lagged conditional variances. Details and explanations of the

extensive GARCH literature may be found in (Bollerslev et al., 1992, 1994; Diebold and Lopes, 1995). SV models are

reviewed in (Taylor, 1994; Ghysels et al., 1994; Shephard, 1996).
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(1987) and Schwert (1989) argued that leverage alone cannot account for the magnitude of the negative

relationship. For example, Campbell and Entchel (2000) found evidence of both volatility feedback

and leverage effects, whereas Bekaert and Wu (2000) presented results suggesting that the volatility

feedback effect dominates the leverage effect empirically.

Frequently, the volatility of daily stock returns has been estimated with SV models, but the re-

sults have relied on a extensive pre-modeling of these series to avoid the problem of simultaneous

estimation of the mean and variance. Koopman and Uspensky (2002) introduced the SV in mean

(SVM) model to deal with this problem and the unobserved volatility is incorporated as an explana-

tory variable in the mean equation of the returns under the normality assumption of the innovations.

They derived an exact maximum likelihood estimation based on Monte Carlo simulation methods.

Recently, Abanto-Valle et al. (2012) extended the SVM model to the class of scale mixture of Normal

distributions and developed an Markov chain Monte Carlo algorithm to sample parameters and the

log-volatilities from a Bayesian viewpoint.

One contribution of this article is to apply the Hamiltonian Monte Carlo (HMC) and Riemann

Manifold HMC (RMHMC) methods within the Markov chain Monte Carlo (MCMC) algorithm to

update the log-volatilities and parameters of the SVM model, respectively. Our MCMC simulation

employs a HMC algorithm (Duane et al., 1987; Neal, 2011) for updating the log-volatilities at once

and RMHC (Girolami and Calderhead, 2011; Nugroho and Morimoto, 2015) for parameters from the

mean and volatility equations at once in two blocks.

Time-varying volatility for financial variables of developed economies have been studied exten-

sively (Liesenfeld and Jung, 2000; Jacquier et al., 2004; Abanto-Valle et al., 2010); however, empirical

studies of the volatility characteristics of the financial markets in Latin America are very scarce and

are far from being thoroughly analyzed despite their growth in recent years(Abanto-Valle et al., 2011;

Rodŕıguez, 2017; Lengua Lafosse and Rodŕıguez, 2018). For this reason, we perform a detailed empir-

ical study of five Latin American indexes: MERVAL (Argentina), IBOVESPA (Brazil), IPSA (Chile),

MEXBOL (Mexico) and IGBVL (Peru) in the context of the SVM model. We also include the S&P

500 returns in order to perform some comparisons. We found empircally, that the coeficient estimate,

which measures both the ex ante relationship between returns and volatility and the volatility feedback

effect, was found to be negative and significant for all the indexes considered here with the exception

of the IGBVL.
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The remainder of this paper is organized as follows. Section 2 gives a brief introduction about

HMC and RMHMC based methods in a general context. Section 3 outlines SVM model as well

as the Bayesian estimation procedure using HMC and RMHMC methods. Section 4 outlines model

comparison criteria. Section 5 is devoted to application using five Latin American indexes and the S&P

500. Finally, some concluding remarks and suggestions for future developments are given in Section 6.

An Appendix outlines details of the HMC and RHMC algorithms, and the likelihood approximation

using hidden Markov models.

2 MCMC using Hamiltonan Dynamics

2.1 Hamiltonian Monte Carlo (HMC)

HMC method proposes a new state by computing a trajectory obeying Hamiltonian dynamics (Neal,

2011). The trajectory is guided by a first-order gradient of the log of the posterior by applying time

discretization in the Hamiltonian dynamics. This gradient information supports the HMC trajectories

in the direction of high probabilities, resulting in a high-acceptance rate and ensuring that the accepted

draws are not highly correlated (Marwala, 2012).

Let θ ∈ Rp be a p−dimensional random variable with density π(θ). In HMC sampling an in-

dependent auxiliary variable ω ∈ Rd, such that ω ∼ Nd(0,M) is introduced. The negative joint

log-probability is

H(θ,ω) = −L(θ) +
1

2
log{(2π)p|M|}+

1

2
ω

′M−1
ω,

where L(θ) = log π(θ). In physical analogy, if θ is interpreted as a position of a particle, −L(θ)

describes its potential energy, while the auxiliary variable ω is interpreted as the momentum with

kinetic energy 1
2ω

′M−1ω and the covariance matrix M denotes a mass matrix. Then the total energy

of a closed system is the Hamiltonian function H(θ,ω) (Duane et al., 1987; Leimkuhler and Reich,

2004).

For continuous time τ , the deterministic evolution of a particle that keeps the total energy constant

is given by the Hamiltonian dynamics equations:

∂θ

∂τ
=

∂H(θ,ω)

∂ω
= M−1

ω

∂ω

∂τ
= −

∂H(θ,ω)

∂θ
= ▽θL(θ),
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where, ▽θL(θ) is the gradient of L(θ) with respect to θ. For practical applications of interest,

these differential equations cannot be solved analytically and numerical methods are required. It is

common to use the Stormer-Verlet leapfrog integrator (Leimkuhler and Reich, 2004), that retains the

reversibility and volume preservation properties required to obtain an exact sampler, and computes

the updates as the following expressions:

ω
(τ+ ǫ

2
) = ω

(τ) +
ǫ

2
▽θL(θ),

θ
(τ+ǫ) = θ

(τ) + ǫM−1
ω

(τ+ ǫ
2
),

ω
(τ+ǫ) = θ

(τ) +
ǫ

2
▽θL(θ

(τ)),

for some user-specified small step-size ǫ > 0. Starting with the current state (θ,ω) and after a

given number of time steps this results in a proposal (θ∗,ω∗). As total energy is only approximately

conserved with the Stormer-Verlet integrator then a corresponding bias is introduced into the joint

density which can be corrected by an accept-reject step. The proposal is accepted as the next state

of Markov chain with probability given by:

α(θ,ω;θ∗,ω∗) = min{1, exp(−H(θ∗,ω∗) +H(θ,ω)}. (1)

2.2 Riemann Manifold Hamiltonian Monte Carlo (RMHMC)

Girolami and Calderhead (2011) proposed a new HMC method called Riemmanian Manifold HMC

(RMHMC) for improving the convergence and mixing of the chain. The RMHMC provides an adapta-

tion mechanism for HMC by exploiting the Riemannian geometry of the parameters space. RMHMC

accounts by adapting the covariance matrix M used in HMC. The idea is to redefine the Hamiltonian

function as

H(θ,ω) = −L(θ) +
1

2
log

{
(2π)p|M(θ)|

}
+

1

2
ω

′M(θ)−1
ω,

where M(θ) = −E( ∂2L()

∂θ∂θ
′ ) is the expected Fisher information matrix plus negative Hessian of the log

prior. Therefore, the Hamiltonian equations for the momentum and position variables, respectively

are now defined by:

∂θ

∂τ
=

∂H(θ,ω)

∂ω
= M(θ)−1

ω,

∂ωi

∂τ
= −

∂H(θ,ω)

∂θi
= ▽θiL(θ)−

1

2
tr

[
M(θ)−1∂M(θ)

∂θi

]
+

1

2
ω

′G(θ)−1∂M(θ)

∂θi
G(θ)−1

ω.
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In order to simulate values in discrete time, we adopt the generalized Stormer-Verlet solution

(Leimkuhler and Reich, 2004), which is described as follows:

ω
(τ+ ǫ

2
) = ω

(τ) −
ǫ

2
▽θH(θ(τ),ω(τ+ ǫ

2
)),

θ
(τ+ǫ) = θ

(τ) +
ǫ

2

[
▽ωH(θ(τ),ω(τ+ ǫ

2
) + ▽ωH(θ(τ+ǫ),ω(τ+ ǫ

2
)

]
,

ω
(τ+ǫ) = ω

(τ+ ǫ
2
) −

ǫ

2
▽θH(θ(τ+ǫ),ω(τ+ ǫ

2
)).

At each iteration, repeated application of these steps provides a proposal (θ∗,ω∗) which is accepted

with probability α(θ,ω;θ∗,ω∗) given by equation (1).

3 The Stochastic Volatility in Mean (SVM) Model

The SVM model is defined by

yt = β0 + β1yt−1 + β2e
ht + e

ht
2 ǫt, (2a)

ht = µ+ φ(ht−1 − µ) + σηt, (2b)

where yt and ht are, respectively, the compounded return and the log-volatility at time t. We assume

that |φ| < 1, i.e., that the log-volatility process is stationary and that the initial value h1 ∼ N (µ,
σ2
η

1−φ2 ).

The innovations ǫt and ηt are assumed to be mutually independent and Normally distributed with mean

zero and unit variance. The SVM model incorporartes the unobserved volatility as an explanatory

variable in the mean equation. The aim of the SVM model is to estimate the ex-ante relation between

returns and volatility and the volatility feedback effect (parameter β2). Under a Bayesian paradigm,

we use MCMC methods to conduct the posterior analysis in the next subsection.

3.1 Parameter Estimation via MCMC

Let θ = (β0, β1, β2, µ, φ, σ
2)′ be the full parameter vector of the SVM model, h1:T = (h1, . . . , hT )

′ be

the vector of the log volatilities and y0:T = (y0, . . . , yT )
′ be the information available up to time T .

The Bayesian approach to estimate the parameters in the SVM model uses the data augmentation

principle (Tanner and Wong, 1987), which considers h1:T as latent parameters. The joint posterior

5



density of parameters and latent unobservable variables can be written as:

p(h1:T ,θ | y0:T ) ∝ p(y1:T | y0,θ,λ1:T ,h0:T )p(h1:T | θ)p(θ)

=
T∏

t=1

[
p(yt | yt−1, β0, β1, β2, ht)

]
p(h1 | µ, φ, σ

2)
T−1∏

t=1

[
p(ht+1 | ht, µ, φ, σ

2)

]
p(θ),

(3)

where p(yt | yt−1, β0, β1, β2, ht) and p(ht+1 | ht, µ, φ, σ
2) are defined for equations (2a) and (2b), and

p(θ) denotes the prior distribution. We assume p(θ) is prior independent. The priors distributions

of parameters in the SVM model are set as: β0 ∼ N (β̄0, σ
2
β0
), β1+1

2 ∼ Be(aβ1 , bβ1), β2 ∼ N (β̄2, σ
2
β2
),

µ ∼ N (µ0, σ
2
µ),

φ+1
2 ∼ Be(aφ, bφ) and σ2 ∼ IG(aσ, bσ), where N (., .), Be(., .) and IG(., .) denote the

Normal, Beta and Inverse Gamma distributions, respectively. This choice of priors ensures that all

parameters have the right support; in particular the Beta prior on β1 and φ ensures that −1 < β1, φ <

1.

Since p(h1:T ,θ | y0:T ) does not have closed form, we sample from using the Gibbs sampling as

described in Algorithm 1.

Algorithm 1

(1) Set i = 0 and get starting values for the parameters θ(i) and the latent quantities h
(i)
1:T .

(2) Generate (µ, φ, σ)(i+1) ∼ p(µ, φ, σ | y1:T ,h
(i)
1:T )

(3) Draw (β0, β1, β2)
(i+1) ∼ p(β0, β1, β2 | h

(i)
1:T ,y0:T ).

(4) Generate h
(i+1)
1:T ∼ p(h1:T | (β0, β1, β2)

(i+1), (µ, φ, σ)(i+1))

(5) Set i = i+ 1 and return to step (2) until convergence is achieved,

where, RMHMC is applied to steps (2) and (3), and HMC is applied to step (4). The detail of

procedures to sample parameters and log-volatity are given in the Appendix.

4 Model Comparison Criteria

Given the wide range of candidate models, it has become increasingly important to be able to

discriminate between competing models for a given application. A popular metric of summary

6



statistics for Bayesian model comparison is the deviance information criterion (DIC) proposed by

Spiegelhalter et al. (2002). This criterion is based on the posterior mean of the deviance. It can be

approximated by D =
Q∑

q=1
D(θq)/Q, where D(θ) = −2 log f(yT | θ) = −2 logL(θ). The DIC can be

estimated using the Monte Carlo output by D̂IC = D + p̂D = 2D − D(θ̄), where p̂D is the effective

number of parameters, and can be evaluated as p̂D = D̄ −D(θ̄). Given the comparison of competing

models, the model that best fits a dataset is the model with the smallest DIC value. It is important

to integrate out all latent variables in the deviance calculation, since this yields a more appropriate

penalty term p̂D. For all these criteria, the evaluation of the likelihood function L(θ) is a key aspect.

However, the likelihood of the SVM can be evaluated using the results given in Appendix B (See

Abanto-Valle et al., 2017, for additional details).

Finally, we use the Log-Predictive Score (LPS, Delatola and Griffin, 2011), which can be estimated

as: L̂PS = − 1
T

∑T
t=1 log p(yt | yt−1, θ̄).

5 Empirical Application

We consider the daily closing prices of five Latin American stock market: MERVAL (Argentina),

IBOVESPA (Brazil), IPSA (Chile), MEXBOL (Mexico) and IGBVL (Peru). We use the S&P 500 in

order to compare the results with Latin American stock markets. One reason is that the U.S. stock

market could be considered as a good benchmark. The data sets were obtained from the Yahoo finance

web site available to download at http://finance.yahoo.com. The period of analysis is from January

6, 1998, until December 30, 2016. Stock returns are computed as yt = 100× (logPt− logPt−1), where

Pt is the (adjusted) closing price on day t. Table 1 shows the number of observation and summary

descriptive statistics. The sample size differs between countries due to holidays and stock market

non-trading days. According to Table 1, the IGBVL and S&P 500 are negatively skewed whereas

the rest are positively skewed. The IGBVL return is the most negatively skewed with -0.3915 and

the IBOVESPA return the most positively skewed with 0.5313. Regarding the kurtosis, all the daily

returns of the five Latin American returns and the S&P 500 are leptokurtic, since all estimates of

kurtosis exceed 3. Brazil, Peru and Chile are the markets with the highest degree of kurtosis with the

USA near the value observed for Chile. Although there are high differences between the minimum

and maximum values, the most outstanding values are those corresponding to Argentina and Brazil.

7
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These two countries show to be the most volatile too, which can be attributed to extreme minimum

and maximum values.

Table 1: Summary statistics for daily stock returns data.

INDEX MERVAL IBOVESPA IPSA MEXBOL IGBVL S & P 500

Size 4651 4698 4737 4759 4597 4777

Mean 0.0701 0.0376 0.0296 0.0464 0.0478 0.0177

S. D. 2.2125 2.0262 1.0695 1.4276 1.4111 1.2418

Minimum -14.2896 -17.2082 -7.6381 -10.3410 -13.2908 -9.4695

Maximum 16.1165 28.8325 11.8034 12.1536 12.8156 10.9572

Skewness 2.2091 0.5313 0.1372 0.1458 -0.3915 -0.2086

Kurtosis 7.3418 16.8094 11.6866 8.7449 13.5715 10.6576

Returns

ρ̂1 0.0550 0.0130 0.1840 0.0910 0.1890 -0.0700

ρ̂2 0.0020 -0.0180 0.0220 -0.0300 0.0080 -0.0450

ρ̂3 0.0240 -0.0390 -0.0190 -0.0301 0.0680 0.0100

ρ̂4 0.0070 -0.0320 0.0250 -0.0030 0.0640 -0.0080

ρ̂5 -0.0090 -0.0170 0.0270 -0.0150 0.0250 -0.0460

Q(12) 33.37 44.51 190.52 54.57 240.53 66.95

Squared Returns

ρ̂1 0.2580 0.1990 0.2320 0.1430 0.4210 0.2040

ρ̂2 0.2160 0.1640 0.2130 0.1780 0.3890 0.3720

ρ̂3 0.1780 0.1860 0.1720 0.2540 0.3920 0.1920

ρ̂4 0.1660 0.1170 0.1550 0.1300 0.2840 0.2880

ρ̂5 0.2130 0.0990 0.2910 0.2420 0.2140 0.3220

Q(12) 1763.4 1069.3 2086.0 2147.1 3960.2 4643.7

We further observe that the IGBVL and IPSA returns show the highest level of first-order auto-

correlation. These values decrease fast for the other orders of autocorrelation. In the case of returns,

high first-order autocorrelation reflects the effects of non-synchronous or thin trading. The squared

returns show high level of autocorrelation of order 1 which can be seen as an indication of volatility

clustering. We further observe that high-order autocorrelations for squared returns are still high and

decrease slowly2.The Q(12) test statistic, which is a joint test for the hypothesis that the first twelve

autocorrelation coefficients are equal to zero, indicates that this hypothesis has to be rejected at the

2This behavior has suggested that the literature considers that there is a long memory in the volatility of returns, as

well as the possibility that infrequent level shifts cause such behavior. For a discussion on this, see Diebold and Inoue

(2001) and Perron and Qu (2010), among others. For applications to different financial markets in Latin America, see

Rodŕıguez (2017) and the references mentioned therein.
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Table 2: MCMC estimation of the SVM model.

Parameter Mean M.C. Error 95% interval Inef CD Parameter Mean M.C. Error 95% interval Inef C.D

MERVAL (Argentina) IBOVESPA (Brazil)

µ 1.1647 0.0020 (0.9931,1.3291) 1.16 -1.79 µ 1.2898 0.0040 (0.9807,1.6022) 1.36 1.17

φ 0.9501 0.0007 (0.9353,0.9629) 19.32 -0.98 φ 0.9730 0.0007 (0.9565,0.9863) 14.83 0.26

σ 0.2688 0.0025 (0.2399,0.3044) 44.67 1.17 σ 0.1649 0.0025 (0.1325,0.1968) 44.23 -0.64

β0 0.2052 0.0008 (0.1291,0.2815) 1.00 0.81 β0 0.2575 0.0018 (0.1101,0.4091) 1.10 -0.07

β1 0.0478 0.0003 (0.0157,0.0783) 1.00 -1.26 β1 0.0309 0.0005 (-0.0161,0.0743) 1.10 -0.07

β2 -0.0287 0.0025 (-0.0510,-0.0073) 1.00 -0.50 β2 -0.0400 0.0004 (-0.0777,-0.0046) 1.00 -0.04

IPSA (Chile) MEXBOL (Mexico)

µ -0.3596 0.0025 (-0.5706,-0.1555) 1.00 -0.33 µ 0.2316 0.0033 (-0.0634,0.5200) 1.00 -0.33

φ 0.9697 0.0004 (0.9599,0.9791) 15.91 0.06 φ 0.9803 0.0003 (0.9725,0.9870) 11.24 -0.56

σ 0.2111 0.0021 (0.1880,0.2385) 55.41 -0.11 σ 0.1859 0.0016 (0.1655,0.2102) 42.70 0.05

β0 0.0710 0.0004 (0.0385,0.1057) 1.00 0.88 β0 0.1039 0.0004 (0.1655,0.2102) 1.00 -0.16

β1 0.1885 0.0003 (0.1578,0.2184) 1.00 -0.79 β1 0.0742 0.0004 (0.0438,0.1051) 1.00 1.50

β2 -0.0442 0.0003 (-0.0581,-0.0021) 1.00 -0.90 β2 -0.0301 0.0003 (-0.0581,-0.0020) 1.00 -0.41

IGBVL (Peru) S&P 500 (USA)

µ -0.0095 0.0025 (-0.2342,0.2044) 1.00 -1.08 µ -0.1332 0.0032 (-0.4096,0.1375) 1.07 0.01

φ 0.9618 0.0006 (0.9490,0.9732) 19.82 -0.98 φ 0.9791 0.0005 (0.9705,0.9864) 28.76 0.91

σ 0.2725 0.0026 (0.2351,0.3102) 37.22 0.86 σ 0.1968 0.0035 (0.1686,0.2311) 100.00 -1.08

β0 0.0596 0.0041 (0.0232,0.0960) 1.00 -0.01 β0 0.1085 0.0004 (0.0754,0.1404) 1.00 -1.05

β1 0.1875 0.0004 (0.1563,0.2199) 1.00 -1.21 β1 -0.0504 0.0003 (-0.0853,-0.0232) 1.00 -0.89

β2 -0.0114 0.0004 (-0.0414,0.0179) 1.11 0.86 β2 -0.0595 0.0004 (-0.0924,-0.0272) 1.07 0.68
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5% significance level for all return and squared return series.

We simulated the ht’s in one block using HMC method which was implemented by using 50

leapfrog steps and a step size of 0.015. (µ, φ, σ)′ and (β0, β1, β2)
′ are sampled in blocks using RMHMC

method. In the case of (µ, φ, σ)′, we use a step size of 0.5, 20 leafprog steps and the number of

fixed point iterations was 5. For (β0, β1, β2)
′ we use a step size of 0.1, 20 leapfrog steps and 5

fixed point iterations. We set the prior distributions of the common parameters as: β0 ∼ N (0, 10),

β1+1
2 ∼ Be(5, 1.5), β2 ∼ N (0, 10), µ ∼ N (0.0, 10), φ+1

2 ∼ Be(20, 1.5), and σ2
η ∼ IG(2.5, 0.025).

These values imply that the prior mean and standard deviation of β1 and φ are (0.5385,0.3077) and

(0.8605,0.1074), respectively. For σ2, the parameter setting implies a prior mean and prior standard

deviation are (0.0167,0.0236).

We conducted the MCMC simulation for 30000 iterations. The first 10000 draws were discarded

as a burn-in period. In order to reduce the autocorrelation between successive values of the simulated

chain, only every 10th values of the chain are stored. With the resulting 2000 values, we calculated

the posterior means, the 95% credible intervals, the Monte Carlo error of the posterior means, the

inefficiency factors (Inef) and the convergence diagnostic (CD) statistics(Geweke, 1992). According

to the CD values, the null hypothesis that the sequence of 2000 draws is stationary is accepted at 5%

level for all the parameters and series considered here.

Table 2 summarizes these results for the five Latin American stock market and the S&P 500

returns. The value of φ is very similar among all markets, suggesting similar degrees of persistence

(ranging from 0.9501 for Argentina to 0.9803 for Mexico). The MEXBOL, IBOVESPA and S&P 500

are more persistent. In fact, for the two former volatilities, the half-lives of the shocks have a duration

of 34.9 and 25.3 days, respectively. In the cases of the IPSA, IGBVL and MERVAL, the durations

are 22.5, 17.8 and 13.5 days, respectively. For the S&P 500, the half-life duration of a shock is around

32.8 days, which is very close to the result of the MEXBOL.

The posterior mean estimates of σ show that all returns have similar estimates in the range from

0.1649 to 0.2725. The higest value is 0.2725 for the IGBVL jointly with the estimate of φ indicates

that IGBVL is the most volatile stock market index in the region. Regarding the posterior mean of

µ, we found that the estimates are statistically significant for the MERVAL, IBOVESPA and IPSA

indexes. For the MEXBOL, IGBVL and S & P 500 indexes, the parameter µ could be not significant

because the credibility interval contains zero.
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Table 3: Correlation matrix of posterior samples of the SVM model.

µ φ σ β0 β1 β2 µ φ σ β0 β1 β2

MERVAL (Argentina) IBOVESPA (Brazil)

µ 1.0000 µ 1.0000

φ 0.0438 1.0000 φ -0.0153 1.0000

σ -0.0842 -0.6941 1.0000 σ -0.0155 -0.5954 1.0000

β0 0.0229 -0.0517 0.0022 1.0000 β0 -0.0434 -0.0452 0.0580 1.0000

β1 0.0247 -0.0331 0.0190 -0.0822 1.0000 β1 0.0086 -0.0390 0.0015 -0.1493 1.0000

β2 -0.0007 0.0442 0.0121 -0.7504 0.0169 1.0000 β2 0.0329 0.0340 -0.0235 -0.8114 0.0829 1.0000

IPSA (Chile) MEXBOL (Mexico)

µ 1.0000 µ 1.0000

φ -0.0079 1.0000 φ 0.0216 1.0000

σ -0.0390 -0.5806 1.0000 σ -0.0290 -0.5456 1.0000

β0 -0.0086 -0.0556 0.0525 1.0000 β0 0.0313 -0.0417 0.0588 1.0000

β1 0.0079 0.0381 -0.0525 -0.1391 1.0000 β1 -0.0399 -0.0070 -0.0171 -0.0761 1.0000

β2 0.0001 0.0426 -0.0409 -0.7417 0.1021 1.0000 β2 0.0151 0.0469 -0.0366 -0.6675 -0.0047 1.0000

IGBVL (Peru) S & P 500 (USA)

µ 1.0000 µ 1.0000

φ 0.0105 1.0000 φ 0.0266 1.0000

σ -0.0495 -0.7258 1.0000 σ -0.0619 -0.6820 1.0000

β0 0.0034 0.0593 -0.0603 1.0000 β0 -0.0140 -0.0789 0.0826 1.0000

β1 -0.0052 0.0185 -0.0305 -0.0674 1.0000 β1 0.0007 0.0364 -0.0599 -0.1315 1.0000

β2 0.0192 -0.0641 -0.0409 -0.6431 -0.0087 1.0000 β2 0.0350 0.0273 0.0183 -0.6614 0.0764 1.0000
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We observe that the posterior mean parameter β0 is always positive and statistically significant

for all series. The value of β1 that measures the correlation of returns is as expected, small and very

similar to the first-order autocorrelation coefficients reported in Table 1. The estimates of β1 are

statistically significant for all series with the exception of Brazil and, although in the cases of Chile

and Peru these values are 0.188 and 0.1875, respectively, these values indicate a weak persistence

with a rapid mean reversion. Regarding the parameter of interest (β2), this is more negative in the

cases of USA, Brazil and Chile. Intermediate values are observed in Argentina and Mexico while

Peru presents the smallest value in absolute terms. Moreover, while all countries have a credibility

interval that excludes the zero value, this does not happen in the case of Peru, so it is difficult to

argue for an uncertainty effect in this market. It is important to note that the right side of the

credibility interval is very close to zero in all markets except the U.S.. Therefore, the posterior mean

of β2 parameter, which measures both the ex ante relationship between returns and volatility and the

volatility feedback effect, is negative for all series and statistically significant for all the series with the

exception of Peru. Following Koopman and Uspensky (2002), the volatility feedback effect (negative)

dominates the positive effect which links the returns with the expected volatility. Our estimates are

more negative compared to those of Koopman and Uspensky (2002) where the hypothesis that β2 = 0

can never be rejected at the conventional 5% siginificance level. Therefore, the volatility feedback effect

is clearly dominant in our results (except for Peru) in comparison to those of Koopman and Uspensky

(2002). These results confirm the hypothesis that investors require higher expected returns when

unanticipated increases in future volatility are highly persistent. This is consistent with our findings

of higher values of φ combined with larger negative values for the in-mean parameter. We have indirect

evidence of a positive intertemporal relation between expected excess market returns and its volatility

as this is one of the assumptions underlying the volatility feedback hypothesis.

Figures 1-6 show the MCMC output, the autocorrelation function (ACF) and the posterior densi-

ties of the parameters of the SVM model for all the indexes considered here. In all the cases, all the

parameters showed well mixing properties with the exception of φ and σ. Regarding the inefficiency

factors, showed in Table 2, these are higher in the φ and σ parameters. The U.S. shows the highest

levels of inefficiency in the estimation of σ while in the case of Peru this is the lowest. A similar

behavior is observed in the case of the φ parameter.
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Now, we consider the correlation between all the parameters for indexes considered here, obtained

from the MCMC output. From Table 3, we found small correlations for almost all the parameters

with exception of φ and σ, and β2 and β0. In both cases, we found negative correlations. This fact

indicates that if φ (β2) increases σ (β0) decreases or vice versa. For φ and σ, we found the most negative

correlation for the IGBVL, followed by MERVAL and S&P 500. For β2 and β0, the most negative

value is found in the IBOVESPA returns, followed by MERVAL and IPSA returns, respectively.

Figure 7 show the smoothed mean of e
ht
2 for all the indexes considered here. The smoothed mean

is obtained as 1
G

∑G
i=1 e

h
(i)
t
2 , where h

(i)
t is the value of ht for the i − th MCMC iteration and G is

the number of iterations. Figure 7 establishes a visual comparison of the evolutions of volatility and

the absolute value of the returns. In both cases, the series show similar patterns at times of low,

medium and high uncertainty, reflected in greater values for the estimated SVM model. It can be

appreciated that the volatility of the Latin American stock market returns has been affected by the

Russia and Brazilian and crises in 1998 and 1999, reflected in higher volatility. Likewise, the financial

crisis in the United States (2008) has had serious repercussions on the behavior of the volatility of the

Latin American stock markets. Moreover, it can also be appreciated that in 2010 there were no major

shocks in these markets. However, in 2011 the crisis was accentuated in the countries of the European

Community and North America, causing uncertainty in the markets of emerging economies such as

Peru.

In order to compare the in-sample-fit of the SVM model, we estimate the GARCH-M(1,1) model

defined by equations (4) and (5) in Appendix B. We conduct an MCMC simulation for 50000 iterations.

The first 10000 draws were discarded as a burn-in period. In order to reduce the autocorrelation

between successive values of the simulated chain, only every 10th values of the chain are stored.

The estimation results for the GARCH-M(1,1) model are given in Table 4, where we observe that

estimates for the δ parameter are always positive and statistically significative and very similar to the

corresponding parameter (β1) in the SVM model (see Table 2) and the first-order autocorrelations in

Table 1. The magnitude of the estimates of the in-mean parameter γ are similar to those obtained

with the SVM model in absolute terms, so a large negative contemporaneous relationship in the SVM

model is accompanied by a large positive ex-ante relationship in the GARCH-M model. However it is

only observed for the cases of Brazil, Chile and Mexico because in the other cases, the null hypothesis

of a zero ex ante relationship between excess returns and volatility can never be rejected at the 5%

13



Table 4: MCMC estimation of the GARCH-M(1,1) model.

Parameter Mean M.C. Error 95% interval Inef CD Parameter Mean M.C. Error 95% interval Inef C.D

MERVAL (Argentina) IBOVESPA (Brazil)

ω 0.0322 0.0017 (-0.0520,0.1185) 1.10 0.07 ω -0.0263 0.0020 (-0.1209,0.0424) 3.95 -0.53

δ 0.0730 0.0005 (0.0502,0.1064) 1.06 0.15 δ 0.0041 0.0003 (0.0000,0.0244) 1.51 1.07

γ 0.0171 0.0004 (-0.0063,0.0373) 1.00 -1.69 γ 0.0341 0.0007 (0.0102,0.0610) 2.81 0.00

α 0.1570 0.0009 (0.1115,0.2041) 1.21 -0.77 α 0.0692 0.0008 (0.0434,0.0932) 4.72 -0.58

β 0.1106 0.0004 (0.0932,0.1330) 1.22 0.84 β 0.0837 0.0005 (0.0691,0.0993) 3.33 0.37

θ 0.8589 0.0005 (0.8316,0.8797) 1.21 -0.12 θ 0.8973 0.0007 (0.8794,0.9170) 4.75 0.48

β + θ 0.9695 0.0002 (0.9540,0.9814) 1.27 -1.31 β + θ 0.9810 0.0003 (0.9714,0.9898) 5.93 0.48

IPSA (Chile) MEXBOL (Mexico)

ω 0.0158 0.0014 (-0.0042,0.0445) 29.17 0.53 ω 0.0225 0.0001 (-0.0183,0.0673) 1.00 0.05

δ 0.1909 0.0012 (0.1642,0.2124) 33.69 -0.50 δ 0.0818 0.0001 (0.0562,0.1105) 1.00 1.01

γ 0.0408 0.0013 (0.0056,0.0632) 22.70 -0.45 γ 0.0359 0.0001 (0.0097,0.0625) 1.00 -1.55

α 0.0245 0.0003 (0.0172,0.0346) 42.67 0.41 α 0.0165 0.0001 (0.0105,0.0258) 1.00 -0.06

β 0.1347 0.0010 (0.1176,0.1573) 29.15 1.62 β 0.0821 0.0004 (0.0675,0.0984) 1.00 0.33

θ 0.8436 0.0011 (0.8143,0.8617) 31.85 -1.06 θ 0.9103 0.0001 (0.8923,0.9623) 1.00 0.33

β + θ 0.9783 0.0008 (0.9630,0.9897) 16.51 0.52 β + θ 0.9923 0.0001 (0.9820,0.9973) 1.00 -0.65

IGBVL (Peru) S&P 500 (USA)

ω 0.0398 0.0006 (0.0026,0.0767) 1.00 -0.05 ω 0.0356 0.0003 (0.0005,0.0713) 1.00 0.68

δ 0.2076 0.0004 (0.1757,0.2387) 1.00 -0.46 δ 0.0059 0.0005 (0.0000,0.0375) 1.00 -0.42

γ 0.0185 0.0004 (-0.0084,0.0439) 1.00 0.13 γ 0.0299 0.0005 (-0.0023,0.0616) 1.00 -1.13

α 0.06186 0.0002 (0.0436,0.0850) 1.00 0.42 α 0.0233 0.0001 (0.0163,0.0302) 1.00 0.97

β 0.1853 0.0006 (0.1542,0.2222) 1.00 0.21 β 0.1018 0.0003 (0.0837,0.1203) 1.00 -0.78

θ 0.7868 0.0005 (0.7435,0.8230) 1.00 -0.10 θ 0.8810 0.0003 (0.8588,0.9006) 1.00 -0.19

β + θ 0.9722 0.0003 (0.9542,0.9866) 1.00 0.18 β + θ 0.9828 0.0001 (0.9730,0.9898) 1.00 -0.19
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significance level. Compared to the SVM model, this result is consistent only for Peru. For the cases

of U.S. and Argentina, results are in opposition with the in-mean parameter β2 in the SVM models

where it is statistically significant. The case of U.S. is surprising given that the SVM model suggests

a statistically significant in-mean parameter whereas the GARCH-M model suggests not rejection of

the zero value hypothesis. Overall, the results confirm the hypothesis that investors require higher

expected returns when unanticipated increases in future volatility are highly persistent in the cases

of Brazil, Chile and Mexico. According to the results of the GARCH-M model, these three markets

present indirect evidence of a positive intertemporal relation between expected excess market returns

and its volatility as this is one of the assumptions underlying the volatility feedback hypothesis. The

SVM model suggests more and stronger evidence in favor of this hypothesis.

The volatility persistence parameters are comparable, but slightly more persistent to those found

for the SVM model with near-unity values for β + θ. It is more evident for Mexico.

We use the log-predictive score (LPS, Delatola and Griffin, 2011) and the deviance information

criteria (DIC, Spiegelhalter et al., 2002) to compare all the competing models. In both cases, the best

model has the smallest LPS (DIC). In order to evaluate the likelihood approximation in the SVM

model, we apply the HMM machinery as described in Appendix C. To ensure a good approximation of

the estimates, we use bm = −b0 = 4.5 and m = 200 (See Abanto-Valle et al., 2017, for more details).

Table 5 shows the LPS and DIC for all the indexes considered here. Acoording to the LPS and DIC

(see values in bold in Table 5) the SVM model outperforms the GARCH-M model for all the indexes.

6 Discussion

This article presented a Bayesian implementation in order to estimate the SVM model as proposed

by Koopman and Uspensky (2002), via HMC and RMHMC methods. The SVM model enabled us to

investigate the dynamic relationship between returns and their time-varying volatility. We illustrated

our methods through an empirical application of five Latin American return series and the S&P

500 return. The β2 estimate, which measures both the ex ante relationship between returns and

volatility and the volatility feedback effect, was found to be negative and significant for all the indexes

considered here with the exception of the IGBVL. The results are in line with those of French et al.

(1987), who found a similar relationship between unexpected volatility dynamics and returns, and
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confirm the hypothesis that investors require higher expected returns when unanticipated increases

in future volatility are highly persistent. This is consistent with our findings of higher values of φ

combined with larger negative values for the in-mean parameter. We also estimated a GARCH-M

model in order to compare estimates of the in-mean parameter. The results are consistent with those

of the SVM model only for Brazil, Chile and Mexico. For the other countries the null hypothesis that

the in-mean parameter is zero is not rejected which, at least for U.S. is surprising and rare.

Table 5: Model comparison criteria. Log-predictive score (LPS) and Deviance Information Criterion

(DIC)

LPS DIC

INDEX / MODEL GARCH-M SVM GARCH-M SVM

MERVAL 2.0981 2.0720 19528.50 19285.50

IBOVESPA 1.9763 1.9720 18580.21 18540.66

IPSA 1.2997 1.2931 12325.90 12262.62

MEXBOL 1.6038 1.5875 15257.72 15121.16

IGBVL 1.5192 1.4942 13979.51 13749.80

S P 500 1.4293 1.4134 13667.49 13516.47

Future research includes extending the model and algorithm to include time-varying parame-

ters including the in-mean parameter. This would allow comparison with other algorithms such

as the one proposed in Chan (2017). The second would be to incorporate heavy-tailedness as in

Abanto-Valle et al. (2012) or skewness and heavy-tailedness simultaneously as in Leão et al. (2017).
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Figure 1: MCMC estimation results of the SVM model for MERVAL (Argentina). Sample paths (top), autocorrelations (middle)

and posterior densities (bottom)
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Figure 2: MCMC estimation results of the SVM model for BOVESPA (Brazil). Sample paths (top), autocorrelations (middle)

and posterior densities (bottom)
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Figure 3: MCMC estimation results of the SVM model for IPSA (Chile). Sample paths (top), autocorrelations (middle) and

posterior densities (bottom)
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Figure 4: MCMC estimation results of the SVM model for MEXBOL (Mexico). Sample paths (top), autocorrelations (middle)

and posterior densities (bottom)
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Figure 5: MCMC estimation results of the SVM model for IGBVL(Peru). Sample paths (top), autocorrelations (middle) and

posterior densities (bottom)
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Figure 6: MCMC estimation results of the SVM model for S&P 500 (USA). Sample paths (top), autocorrelations (middle) and

posterior densities (bottom)
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ht
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Appendix

A.1 Sampling scheme for (µ, φ, σ)′

We assume that µ ∼ N (µ0, σ
2
µ), (φ+ 1)/2 ∼ Be(aφ, bφ), σ

2 ∼ IG(aσ, bσ). To deal with constraints on

the values of φ, σ, we make the transformation of these to the real line. So, we have φ = tanh(ω),

σ = exp(γ). Let θ1 = (µ, ω, γ)′ and from equation (3), we have

L(θ1) = constant +
1

2
log(1− φ2)−

1− φ2

2σ2
(h1 − µ)2 −

1

2σ2

T−1∑

t=1

[ht+1 − µ− φ(ht − µ)]2

− T log(σ) + (aφ − 1)(1 + φ) + (bφ − 1) log(1− φ)− 2(aσ + 1) log(σ)−
bσ
σ2

−
1

2σ2
µ

(µ− µ0)
2.

As φ = tanh(ω) and σ = exp(γ), then dφ
dω = 1− φ2 and dσ

dγ = σ, so we have that the gradient is given

by

▽θ1
L(θ1) =




▽µL(θ1)

▽ωL(θ1)

▽γL(θ1)


 ,

where

▽µL(θ1) =
1− φ2

σ2
(h1 − µ) +

1− φ

σ2

T−1∑

t=1

[ht+1 − µ− φ(ht − µ)]−
1

σ2
µ

(µ− µ0)

▽ωL(θ1) = −φ+
φ(1− φ2)

σ2
(h1 − µ)2 +

1− φ2

σ2

T−1∑

t=1

[ht+1 − µ− φ(ht − µ)][ht − µ]

+ (aφ − 1)(1− φ)− (bφ − 1)(1 + φ)

▽γL(θ1) = −T +
1− φ2

σ2
(h1 − µ)2 +

1

σ2

T−1∑

t=1

[ht+1 − µ− φ(ht − µ)]2

− 2(aσ + 1) + 2
bσ
σ2

.

Then, we have the tensor matrix:

M(θ1) =




(1−φ)2(T−1)
σ2 + 1−φ2

σ2 + 1
σ2
µ

0 0

0 2φ2 + (T − 1)(1− φ2) + (aφ + bφ − 2)(1− φ2) 2φ

0 2φ 2T + 4bσ
σ2
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and

∂M(θ1)

∂µ
= 03×3

∂M(θ1)

∂ω
=




−2(1−φ2)
σ2 [(1− φ)(T − 1) + φ] 0 0

0 2φ(1− φ2)[4− (T − 1)− aφ − bφ] 2(1− φ2)

0 2(1− φ2) 0




∂M(θ1)

∂γ
=




− 2
σ2 [(1− φ)2(T − 1) + 1− φ2] 0 0

0 0 0

0 0 −8bσ
σ2




A.2 Sampling scheme for (β0, β1, β2)
′

We assume the priors distribution as follows: β0 ∼ N ( β̄0, σ
2
β0
), (β1 + 1)/2 ∼ Be(aβ1 , bβ1) and

N (β̄2, σ
2
β2
). We make the transformation β1 = tanh(δ) and let θ2 = (β0, δ, β2)

′ and from equation (3),

we have:

L(θ2) = constant−
1

2

T∑

t=1

λte
−ht [yt − β0 − β1yt−1 − β2e

ht ]2 −
1

2σβ2
0

(β0 − β̄0)
2

+ (aβ1 − 1) log(1 + β1) + (bβ1 − 1) log(1− β1)−
1

2σβ2
2

(β2 − β̄2)
2.

As, β1 = tanh(δ) dβ1

dδ = 1− β2
1 . Then, we have the gradient is given by

▽θ2
L(θ2) =




▽β0L(θ2)

▽δL(θ2)

▽β2L(θ1)


 ,

where

▽β0L(θ2) =
T∑

t=1

λte
−ht [yt − β0 − β1yt−1 − β2e

ht ]−
1

σβ2
0

(β0 − β̄0)

▽δL(θ2) = (1− β2
1)

T∑

t=1

λte
−ht [yt − β0 − β1yt−1 − β2e

ht ]yt−1

+ (aβ1 − 1)(1− β1)− (bβ1 − 1)(1 + β1)

▽β2L(θ2) =
T∑

t=1

λt[yt − β0 − β1yt−1 − β2e
ht ]−

1

σβ2
2

(β0 − β̄2).
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Then, we have the tensor matrix:

M(θ2) =













∑T
t=1 e

−ht + 1
σ
β2
0

(1− β2
1)

∑T
t=1 e

−htyt−1 T

(1− β2
1)

∑T
t=1 e

−htyt−1 (1− β2
1)

2
∑T

t=1 e
−hty2t−1 + (aβ1

+ bβ1
− 2)(1− β2

1) (1− β2
1)

∑T
t=1 yt−1

∑T
t=1 (1− β2

1)
∑T

t=1 λtyt−1
∑T

t=1 e
ht + 1

σ
β2
2













∂M(θ2)

∂µ
= 03×3

∂M(θ2)

∂ω
=











0 −2β1(1− β2
1)

∑T
t=1 e

−htyt−1 0

−2β1(1− β2
1)

∑T
t=1 e

−htyt−1 −4β1(1− β2
1)

2
∑T

t=1 e
−hty2t−1 − 2β1(aβ1

+ bβ1
− 2)(1− β2

1) −2β1(1− β2
1)

∑T
t=1 yt−1

0 −2β1(1− β2
1)

∑T
t=1 yt−1 0











∂M(θ1)

∂β2
= 03×3

A3. Sampling h1:T

Let L(h1:T ) be defined by

L(h1:T ) = constant +
T∑

t=1

ht
2
−

1

2σ2

T−1∑

t=1

[ht+1 − µ− φ(ht − µ)]2 −
1− φ2

2σ2
(h1 − µ)2

−
1

2

T∑

t=1

e−ht(yt − β0 − β1yt−1 − β2e
ht)2.

Then, we have the gradient ▽h1:T
L(h1:T ) is given by

▽h1:T
L(h1:T ) =




▽h1L(h1:T )
...

▽ht
L(h1:T )
...

▽hT
L(h1:T )




,
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where

▽h1L(h1:T ) = −
1

2
+

1

2
e−h1(y1 − β0 − β1y0 − β2e

h1)2 + β2(y1 − β0 − β1y0 − β2e
h1)

+
φ

σ2
[h2 − µ− φ(h1 − µ)]−

1− φ2

σ2
(h1 − µ)

▽ht
L(h1:T ) = −

1

2
+

1

2
e−ht(yt − β0 − β1yt−1 − β2e

ht)2 + β2(yt − β0 − β1yt−1 − β2e
ht)

+
φ

σ2
[ht+1 − µ− φ(ht − µ)]−

1

σ2
[ht − µ− φ(ht−1 − µ)] for 1 < t < T

▽hT
L(h1:T ) = −

1

2
+

1

2
e−hT (yT − β0 − β1yT−1 − β2e

hT )2 + β2(yT − β0 − β1yT − β2e
hT )

−
1

σ2
[hT − µ− φ(hT−1 − µ)]

B. Sampling scheme of the parameters in the GARCH-M(1,1) model

The GARCH(1,1) in mean model is defined by

yt = ω + δyt−1 + γht + h
1/2
t ǫt ǫt ∼ N (0, 1) (4)

ht = α + β(htǫ
2
t−1) + θht−1 (5)

where |δ| < 1, α ≥ 0, β, θ > 0 and β + θ < 1. We use the following reparameterization

ψ = log(δ/(1 − δ)), κ = log(α), λ = log(β/(1 − β)) and ρ = log(θ/(1 − β − θ)). Let θ =

(ω, ψ, γ, κ, λ, ρ)′. We assume θ ∼ N6(θ0,Σ0), where Nq(., .) denotes the q-variate normal

distribution. Then the posterior distribution of θ is given by

π(θ | y−1, y0, y1, . . . , yt) ∝
T∏

t=1

h
−1/2
t exp{−

1

2ht
(yt − ω − δyt−1 − γht)

2}

× exp{−
1

2
(θ − θ0)

′Σ−1
0 (θ − θ0)}.

As π(θ | y−1, y0, y1, . . . , yt) does not have closed form, we sample form using a Metropolis-

Hastings algorithm with proposal N6(θ1,Σ1), where θ1 is the maximum a posteriori and Σ1

the inverse of the Hessian matrix evaluated at θ1
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C. Likelihood evaluation by iterated numerical integration and fast evaluation of

the approximate likelihood using HMM techniques

To formulate the likelihood, we require the conditional pdfs of the random variables yt, given

ht and yt−1 (t = 1, . . . , T ), and of the random variables ht, given ht−1 (t = 2, . . . , T ). We

denote these by p(yt | yt−1, ht) and p(ht | ht−1), respectively. For a member of the class of

SMN distributions, the likelihood of the model defined by equations (2a) and (2b) can then be

derived as

L =

∫
. . .

∫
p(y1, . . . , yT , h1, . . . , hT | y0)dhT . . . dh1

=

∫
. . .

∫
p(y1, . . . , yT | y0, h1, . . . , hT )p(h1, . . . , hT )dhT . . . dh1

=

∫
. . .

∫
p(h1)p(y1 | y0, h1)

T∏

t=2

p(yt | yt−1, ht)p(ht | ht−1)dhT . . . dh1,

exploiting the dependence structure of the stochastic volatility models in the last step. Hence,

the likelihood is a high-order multiple integral that cannot be evaluated analytically. Through

numerical integration, using a simple rectangular rule based on m equidistant intervals, Bi =

(bi−1, bi), i = 1, . . . ,m, with midpoints b∗i and length b, the likelihood can be approximated as

follows:

L ≈ bT
m∑

i1=1

. . .

m∑

iT=1

p(h1 = b∗i1)p(y1 | y0, h1 = b∗i1)

×
T∏

t=2

p(ht = b∗it | ht−1 = b∗it−1
)p(yt | yt−1, ht = b∗it) = Lapprox . (6)

This approximation can be made arbitrarily accurate by increasing m, provided that the in-

terval (b0, bm) covers the essential range of the log-volatility process. We note that this simple

midpoint quadrature is by no means the only way in which the integral can be approximated

(cf. Langrock et al., 2012).

In the form given in (6), the approximate likelihood can be evaluated numerically, but

the evaluation will usually be computationally intractable since it involves mT summands.

However, instead of the brute force summation in (6), an efficient recursive scheme can be used

to evaluate the approximate likelihood. To see this, we note that the numerical integration
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essentially corresponds to a discretization of the state space, i.e., the support of the log-volatility

process ht. Therefore, the approximate likelihood given in (6) can be evaluated using the

tools well-established for HMMs, which are the models that have exactly the same dependence

structure as the stochastic volatility models, but with a finite and hence discrete state space (cf.

Langrock, 2011; Langrock et al., 2012). In the given scenario, the discrete states correspond to

the intervals Bi, i = 1, . . . ,m, in which the state space has been partitioned. A key property

of HMM, which we exploit here, is that the likelihood can be evaluated efficiently using the so-

called forward algorithm, a recursive scheme which iteratively traverses forward along the time

series, updating the likelihood and the state probabilities in each step (Zucchini et al., 2016).

For an HMM, applying the forward algorithm results in a convenient closed-form matrix product

expression for the likelihood, and this is exactly what is obtained also for the SVM model:

Lapprox = δP(y1)ΓP(y2)ΓP(y3) · · ·ΓP(yT−1)ΓP(yT )1
′ . (7)

Here, the m×m-matrix Γ =
(
γij

)
is the analogue to the transition probability matrix in case

of an HMM, defined by γij = p(ht = b∗j | ht−1 = b∗i ) · b, which is an approximation of the

probability of the log-volatility process changing from some value in the interval Bi to some

value in the interval Bj; this conditional probability is determined by (2b). The vector δ is

the analogue to the Markov chain initial distribution in case of an HMM, here defined such

that δi is the density of the N (µ,
σ2
η

1−φ2 )-distribution — the stationary distribution of the log-

volatility process — multiplied by b. Furthermore, P(yt) is an m × m diagonal matrix with

the ith diagonal entry p(yt | yt−1, ht = b∗i ), hence the analogue to the matrix comprising the

state-dependent probabilities in case of an HMM; this conditional probability is determined

by (2a). Finally, 1′ is a column vector of ones. Using the matrix product expression given in

(7), the computational effort required to evaluate the approximate likelihood is linear in the

number of observations, T , and quadratic in the number of intervals used in the discretization,

m.

In practice, this means that the likelihood can typically be calculated in a fraction of a

second, even for T in the thousands and say m = 100, a value which renders the approximation

virtually exact. Furthermore, the approximation can be made arbitrarily accurate by increasing

m (and potentially widening the interval [b0, bm]).
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It should perhaps be noted here that, although we are using the HMM forward algorithm

to evaluate the (approximate) likelihood, the specifications of δ, Γ and P(xt) given above do

not define exactly an HMM, since in general the row sums of Γ will only approximately equal

one, and the components of the vector δ will only approximately sum to one. If desired, this

can be remedied by scaling each row of Γ and the vector δ to total 1.
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