Tesis y Trabajos de Investigación PUCP

URI permanente para esta comunidadhttp://54.81.141.168/handle/123456789/6

El Repositorio Digital de Tesis y Trabajos de Investigación PUCP aporta al Repositorio Institucional con todos sus registros, organizados por grado: Doctorado, Maestría, Licenciatura y Bachillerato. Se actualiza permanentemente con las nuevas tesis y trabajos de investigación sustentados y autorizados, así como también con los que que fueron sustentados años atrás.
Ingresa a su web: Repositorio Digital de Tesis y Trabajos de Investigación PUCP

Explorar

Resultados de búsqueda

Mostrando 1 - 2 de 2
  • Ítem
    Predicción temporal de calidad del aire en Lima a partir de datos de estaciones de bajo costo y Aprendizaje Automático: una revisión de literatura
    (Pontificia Universidad Católica del Perú, 2021-08-23) Paredes Salazar, Diego José; Villanueva Talavera, Edwin Rafael
    El presente trabajo explora los estudios en los cuales se utilizan técnicas de aprendizaje profundo para realizar predicción temporal de calidad del aire, de manera que se pueda comprender que características tendrían los modelos de aprendizaje profundo que tienen un mejor rendimiento con para realizar esta tarea y puedan utilizarse como línea base para desarrollar modelos similares en el contexto de la ciudad de lima. Esta revisión de literatura se realiza con el objetivo de poder obtener los modelos de aprendizaje profundo que estén teniendo un mejor rendimiento en la actualidad al predecir temporalmente la calidad del aire mediante un procedimiento que garantice objetividad y reproducción de resultados. Para ello, se realiza una revisión sistemática de literatura que garantiza el uso de procedimientos estructurados y definidos para conocer las preguntas de investigación que guían la exploración de los estudios de predicción temporal de calidad del aire, los motores de búsqueda considerados para la revisión y las cadenas de búsqueda asociadas tanto a las preguntas de investigación como los motores de búsqueda, de manera que estas se puedan ejecutar y reproducir la obtención de estudios. Las respuestas se reportan en un formulario de extracción con datos relacionados a las arquitecturas de aprendizaje profundo, limitaciones de los modelos empleados y el rendimiento obtenido por cada modelo en cada estudio. Al finalizar el estudio, se concluye que se puede desarrollar un modelo basado en una arquitectura adecuada de aprendizaje profundo para poder atacar el problema de la predicción inadecuada de calidad del aire en Lima al percatar su efectividad reportada en la literatura para otras localidades en el mundo, considerando que dichos modelos deben tomarse únicamente como una línea base y que deben ajustarse a la localidad de Lima para obtener predicciones adecuadas a su entorno.
  • Ítem
    Aplicación de redes bayesianas para modelamiento y predicción de calidad del aire en áreas urbana
    (Pontificia Universidad Católica del Perú, 2020-10-27) Cusi Chirapo, Hernán; Villanueva Talavera, Edwin Rafael
    La contaminación del aire es hoy en día uno de los mayores problemas en las grandes ciudades. Entender la dinámica de los contaminantes y determinar la calidad de aire en áreas no monitorizadas ha sido el objetivo de varias investigaciones recientes dada su relevancia en la creación de políticas de mitigación. Los enfoques propuestos se dividen principalmente en aquellos que intentan modelar la dinámica de emisión/difusión y en aquellos que intentan predecir la concentración de contaminantes en el espacio y/o tiempo. Comúnmente estos enfoques tienen fines diferentes, los primeros se enfocan en entender los mecanismos que expliquen la distribución histórica de contaminantes, mientras que los segundos se enfocan en crear modelos predictivos, sin importar si dichos modelos representan las causalidades de los procesos subyacentes. En la presente investigación se propone la aplicación de modelos de redes Bayesianas, las cuales pueden tanto capturar posibles causalidades del proceso de formación y difusión de contaminación, así como servir de modelos algorítmicos para inferir en el espacio y en el tiempo los parámetros de calidad del aire. Se aplicó la técnica de bootstraping junto con técnicas de aprendizaje estructural para aprender diversos modelos bayesianos e integrarlos en un modelo robusto en el cual se puede discriminar relaciones fuertes entre las variables de calidad del aire de posibles relaciones espurias. En un primer experimento se creó modelos para predecir un determinado tipo de contaminante en un punto en el espacio, dada las mediciones de una red de estaciones del mismo tipo de contaminante. En un segundo experimento se adicionó varios tipos de contaminantes para hacer dicha predicción. En un tercer experimento se aprendió modelos adicionando dos variables metereológicas comúnmente usadas para el modelado de calidad del aire: velocidad y dirección del viento. En un cuarto experimento se aprendió modelos suministrando conocimiento a priori aprendido en el primer experimento a fin de reducir costo computacional de aprendizaje e inferencia. En total, se aprendieron 504 modelos, identificándose 6 modelos en el ultimo experimento con capacidades predictivas significativas a costos computacionales razonables. Como ventaja del modelado se pudo identificar las distancias de influencia de la red de estaciones que incide directamente en la predicción espacial, ayudando así a entender la dinámica de difusión de los diferentes tipos de contaminantes.