Explorando por Autor "Grozo Alencar, Gerardo Andre"
Mostrando 1 - 2 de 2
- Resultados por página
- Opciones de ordenación
Ítem Texto completo enlazado Análisis estructural considerando interacción suelo - estructura en centro educativo Puente Piedra(Pontificia Universidad Católica del Perú, 2021-02-15) Garro Manayay, Hernán Jhonatan; Sotelo Vargas, Hebert Harley; Grozo Alencar, Gerardo Andre; Argüelles Madalengoitia, Luis Augusto; Aguirre Plejo, Carlos Bruno; Ucañan Diaz, RobinsonEn la actual Norma Peruana de Diseño Sismorresistente, las características del suelo de fundación y su impacto en la respuesta de la estructura se representan en una modificación de la aceleración en el sitio de la edificación. Dicho factor se magnifica en la medida de la cantidad de energía remanente después de la disipada por la deformación del suelo debido a un determinado nivel de sismo. Por lo tanto, el efecto del suelo incide directamente en la construcción del espectro de diseño. Sin embargo, no se acompaña dicha consideración de las propiedades del terreno durante el proceso de análisis. El desarrollo de la investigación y planteamiento de modelos más acertados con el comportamiento estructural surge con la necesidad de incrementar la confiabilidad de los resultados acordes a los objetivos de la ingeniería de desempeño y resiliencia. Por tal motivo, la interacción suelo-estructura es una de las principales líneas de estudio y busca conocer la modificación del movimiento del sistema de fundación. En el presente trabajo de investigación se realiza un análisis modal espectral de un pabellón escolar de dos niveles y una azotea de muros de concreto armado, cimentado sobre un suelo arcilloso de baja plasticidad (clasificación S2 según Norma E.030). Se pretende validar los modelos dinámicos de interacción suelo-estructura propuestos en las guías de diseño sismorresistente ASCE 41-13 y GBDS 2020. Asimismo, se compara los resultados obtenidos frente a un modelo de base fija en términos de fuerzas y desplazamientos del sistema y los elementos estructurales, dentro de los lineamientos de la Norma Peruana. Finalmente, a partir de las comparaciones de cada modelo, se concluye que la flexibilización de la base genera un estiramiento del periodo, incremento de las derivas, así como problemas de irregularidad torsional. Asimismo, la incidencia en las fuerzas de diseño tiene una mayor variabilidad según el tipo de elemento y su ubicación.Ítem Texto completo enlazado Diseño estructural de un edificio de concreto armado de seis pisos ubicado en la zona 4 de Arequipa(Pontificia Universidad Católica del Perú, 2023-03-16) Grozo Alencar, Gerardo Andre; Noriega Barrueto, RenzoEste documento presenta el diseño de un edificio de 8 niveles de concreto armado para uso multifamiliar. Este edificio cuenta con 6 pisos con 2 departamentos por piso, un nivel de azotea y un semisótano destinado a estacionamientos. El terreno tiene 513 m2 de área, el primer piso tiene un área de 394 m2 y el piso típico tiene 328 m2 de área techada. Por otro lado, el semisótano tiene un área de 509 m2. La edificación tiene un total de 17 estacionamientos, tres se encuentran en el primer piso y catorce en el semisótano. El terreno se encuentra en la provincia de Arequipa, en el distrito de La Joya, compuesto principalmente de grava bien graduada la cual cuenta con una capacidad portante del suelo de 4 kg/cm2. El factor de la aceleración máxima horizontal del suelo es de 0.45g para la zona 4 indicado en la Norma E.030 (2018) El proyecto presenta un sistema estructural de muros para la dirección X-X y un sistema mixto de pórticos y muros de concreto armado en la dirección Y-Y. Los techos se comportan como un diafragma rígido, brindándole al edificio la posibilidad de considerar 3 GDL por nivel. Para los techos, se utilizó losa aligerada en un solo sentido para la parte exterior del edificio y losa maciza en la parte interior principalmente en la zona común de escaleras y ascensores. La edificación presenta cuatro grandes placas en los lados colindantes con los vecinos, estas serán las que aportarán mayor rigidez lateral al edificio. Por otro lado, las cimentaciones cuentan con zapatas aisladas, combinadas y conectadas, así como el uso de vigas de cimentación para conectar las zapatas en los límites de propiedad. Adicionalmente, las edificaciones vecinas cuentan con dos niveles, los cuales ejercen una sobrecarga de 1.5 ton/m sobre los muros del semisótano. El análisis sísmico de los edificios se realizará a través de un modelo en 3D con el programa ETABS de manera que se pueda verificar el cumplimiento de la Norma E.030 (2018) del Reglamento Nacional de Edificaciones. De la misma manera, se seguirá las pautas de la Norma E.020 (2009) para obtener las cargas de gravedad que presente el proyecto. Igualmente, para el diseño estructural en concreto armado se deben cumplir las pautas establecidas en la Norma E.060 (2009).